Assessing and Comparing Classification Algorithms.ppt
《Assessing and Comparing Classification Algorithms.ppt》由会员分享,可在线阅读,更多相关《Assessing and Comparing Classification Algorithms.ppt(27页珍藏版)》请在麦多课文档分享上搜索。
1、Assessing and Comparing Classification Algorithms,Introduction Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),2,Introduction,Question
2、s: Assessment of the expected error of a learning algorithm: Is the error rate of 1-NN less than 2%? Comparing the expected errors of two algorithms: Is k-NN more accurate than MLP ? Training/validation/test sets Resampling methods: K-fold cross-validation,Lecture Notes for E Alpaydn 2004 Introducti
3、on to Machine Learning The MIT Press (V1.1),3,Algorithm Preference,Criteria (Application-dependent): Misclassification error, or risk (loss functions) Training time/space complexity Testing time/space complexity Interpretability Easy programmability Cost-sensitive learning,Assessing and Comparing Cl
4、assification Algorithms,Introduction Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),5,Resampling and K-Fold Cross-Validation,The need
5、 for multiple training/validation setsXi,Vii: Training/validation sets of fold i K-fold cross-validation: Divide X into k, Xi,i=1,.,KTi share K-2 parts,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),6,52 Cross-Validation,5 times 2 fold cross-validation (Diette
6、rich, 1998),Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),7,Bootstrapping,Draw instances from a dataset with replacement Prob that we do not pick an instance after N drawsthat is, only 36.8% is new!,Assessing and Comparing Classification Algorithms,Introducti
7、on Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),9,Measuring Error,Error rate = # of errors / # of instances = (FN+FP) / N Recall =
8、# of found positives / # of positives = TP / (TP+FN) = sensitivity = hit rate Precision = # of found positives / # of found= TP / (TP+FP) Specificity = TN / (TN+FP) False alarm rate = FP / (FP+TN) = 1 - Specificity,Methods for Performance Evaluation,How to obtain a reliable estimate of performance?P
9、erformance of a model may depend on other factors besides the learning algorithm: Class distribution Cost of misclassification Size of training and test sets,Learning Curve,Learning curve shows how accuracy changes with varying sample size Requires a sampling schedule for creating learning curve: Ar
10、ithmetic sampling (Langley, et al) Geometric sampling (Provost et al)Effect of small sample size: Bias in the estimate Variance of estimate,ROC (Receiver Operating Characteristic),Developed in 1950s for signal detection theory to analyze noisy signals Characterize the trade-off between positive hits
11、 and false alarms ROC curve plots TP (on the y-axis) against FP (on the x-axis) Performance of each classifier represented as a point on the ROC curve changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point,http:/en.wikipedia.org/wiki/Receiver_operat
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASSESSINGANDCOMPARINGCLASSIFICATIONALGORITHMSPPT

链接地址:http://www.mydoc123.com/p-378633.html