欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Assessing and Comparing Classification Algorithms.ppt

    • 资源ID:378633       资源大小:517.50KB        全文页数:27页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Assessing and Comparing Classification Algorithms.ppt

    1、Assessing and Comparing Classification Algorithms,Introduction Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),2,Introduction,Question

    2、s: Assessment of the expected error of a learning algorithm: Is the error rate of 1-NN less than 2%? Comparing the expected errors of two algorithms: Is k-NN more accurate than MLP ? Training/validation/test sets Resampling methods: K-fold cross-validation,Lecture Notes for E Alpaydn 2004 Introducti

    3、on to Machine Learning The MIT Press (V1.1),3,Algorithm Preference,Criteria (Application-dependent): Misclassification error, or risk (loss functions) Training time/space complexity Testing time/space complexity Interpretability Easy programmability Cost-sensitive learning,Assessing and Comparing Cl

    4、assification Algorithms,Introduction Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),5,Resampling and K-Fold Cross-Validation,The need

    5、 for multiple training/validation setsXi,Vii: Training/validation sets of fold i K-fold cross-validation: Divide X into k, Xi,i=1,.,KTi share K-2 parts,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),6,52 Cross-Validation,5 times 2 fold cross-validation (Diette

    6、rich, 1998),Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),7,Bootstrapping,Draw instances from a dataset with replacement Prob that we do not pick an instance after N drawsthat is, only 36.8% is new!,Assessing and Comparing Classification Algorithms,Introducti

    7、on Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),9,Measuring Error,Error rate = # of errors / # of instances = (FN+FP) / N Recall =

    8、# of found positives / # of positives = TP / (TP+FN) = sensitivity = hit rate Precision = # of found positives / # of found= TP / (TP+FP) Specificity = TN / (TN+FP) False alarm rate = FP / (FP+TN) = 1 - Specificity,Methods for Performance Evaluation,How to obtain a reliable estimate of performance?P

    9、erformance of a model may depend on other factors besides the learning algorithm: Class distribution Cost of misclassification Size of training and test sets,Learning Curve,Learning curve shows how accuracy changes with varying sample size Requires a sampling schedule for creating learning curve: Ar

    10、ithmetic sampling (Langley, et al) Geometric sampling (Provost et al)Effect of small sample size: Bias in the estimate Variance of estimate,ROC (Receiver Operating Characteristic),Developed in 1950s for signal detection theory to analyze noisy signals Characterize the trade-off between positive hits

    11、 and false alarms ROC curve plots TP (on the y-axis) against FP (on the x-axis) Performance of each classifier represented as a point on the ROC curve changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point,http:/en.wikipedia.org/wiki/Receiver_operat

    12、ing_characteristic,http:/www.childrensmercy.org/stats/ask/roc.asp,ROC Curve,- 1-dimensional data set containing 2 classes (positive and negative) - any points located at x t is classified as positive,ROC Curve,(TP,FP): (0,0): declare everything to be negative class (1,1): declare everything to be po

    13、sitive class (1,0): idealDiagonal line: Random guessing Below diagonal line:prediction is opposite of the true class,Using ROC for Model Comparison,No model consistently outperform the other M1 is better for small FPR M2 is better for large FPRArea Under the ROC curve Ideal: Area = 1 Random guess:Ar

    14、ea = 0.5,How to Construct an ROC curve,Use classifier that produces posterior probability for each test instance P(+|A)Sort the instances according to P(+|A) in decreasing orderApply threshold at each unique value of P(+|A)Count the number of TP, FP, TN, FN at each thresholdTP rate, TPR = TP/(TP+FN)

    15、FP rate, FPR = FP/(FP + TN),How to construct an ROC curve,Threshold =,ROC Curve:,+ + - + - - - + - +,+,-,Reverse of above order,Assessing and Comparing Classification Algorithms,Introduction Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comp

    16、aring Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),19,Interval Estimation,X = xt t where xt N ( , 2) m N ( , 2/N),100(1- ) percent confidence interval,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),20,When

    17、2 is not known:,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),21,Hypothesis Testing,Reject a null hypothesis if not supported by the sample with enough confidence X = xt t where xt N ( , 2)H0: = 0 vs. H1: 0 Accept H0 with level of significance if 0 is in the

    18、100(1- ) confidence intervalTwo-sided test,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),22,One-sided test: H0: 0 vs. H1: 0 Accept ifVariance unknown: Use t, instead of z Accept H0: = 0 if,Assessing and Comparing Classification Algorithms,Introduction Resampl

    19、ing and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),24,Assessing Error: H0: p p0 vs. H1: p p0,Single training/validation set: Binomial TestIf err

    20、or prob is p0, prob that there are e errors or less in N validation trials is,1- ,Accept if this prob is less than 1- ,N=100, e=20,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),25,Normal Approximation to the Binomial,Number of errors X is approx N with mean N

    21、p0 and var Np0(1-p0),Accept if this prob for X = e is less than z1-,1- ,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),26,Paired t Test,Multiple training/validation sets xti = 1 if instance t misclassified on fold i Error rate of fold i:With m and s2 average a

    22、nd var of pi we accept p0 or less error ifis less than t,K-1,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),27,K-Fold CV Paired t Test,Use K-fold cv to get K training/validation folds pi1, pi2: Errors of classifiers 1 and 2 on fold i pi = pi1 pi2 : Paired difference on fold i The null hypothesis is whether pi has mean 0,


    注意事项

    本文(Assessing and Comparing Classification Algorithms.ppt)为本站会员(visitstep340)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开