【考研类试卷】考研数学三(线性代数)模拟试卷102及答案解析.doc
《【考研类试卷】考研数学三(线性代数)模拟试卷102及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三(线性代数)模拟试卷102及答案解析.doc(10页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(线性代数)模拟试卷 102 及答案解析(总分:64.00,做题时间:90 分钟)一、选择题(总题数:11,分数:22.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.四阶行列式 (分数:2.00)A. 1 2 3 4 b 1 b 2 b 3 b 4B. 1 2 3 4 +b 1 b 2 b 3 b 4C.( 1 2 b 1 b 2 )( 3 4 b 3 b 4 )D.( 2 3 b 2 b 3 ) ( 1 4 b 1 b 4 )3.设 A 为 n 阶非零矩阵,E 为 n 阶单位矩阵。若 A 3 =O,则( )(分数:2.00)A.EA 不
2、可逆,E+A 不可逆B.EA 不可逆,E+A 可逆C.EA 可逆,E+A 可逆D.EA 可逆,E+A 不可逆4.设 (分数:2.00)A.a=1 时,B 的秩必为 2B.a=1 时,B 的秩必为 1C.a1 时,B 的秩必为 1D.a1 时,B 的秩必为 25.设 1 , 2 , s 均为 n 维向量,下列结论中不正确的是( )(分数:2.00)A.若对于任意一组不全为零的数后 k 1 ,k 2 ,k s ,都有 k 1 1 +k 2 2 +k s s 0,则 1 , 2 , s 线性无关B.若 1 , 2 , s 线性相关,则对于任意一组不全为零的数 k 1 ,k 2 ,k s ,都有 k
3、1 1 +k 2 2 +k s s =0C. 1 , 2 , s 线性无关的充分必要条件是此向量组的秩为 sD. 1 , 2 , s 线性无关的必要条件是其中任意两个向量线性无关6.已知 1 , 2 , 3 , 4 是三维非零列向量,则下列结论 若 4 不能由 1 , 2 , 3 线性表出,则 1 , 2 , 3 线性相关; 若 1 , 2 , 3 线性相关, 2 , 3 , 4 线性相关,则 1 , 2 , 4 也线性相关; 若 r( 1 , 1 + 2 , 2 + 3 )=r( 4 , 1 + 4 , 2 + 4 , 3 + 4 ),则 4 可以由 1 , 2 , 3 线性表出。 其中正确
4、的个数是( )(分数:2.00)A.0B.1C.2D.37.非齐次线性方程组 Ax=b 中未知量的个数为 n,方程个数为 m,系数矩阵的秩为 r,则( )(分数:2.00)A.r=m 时,方程组 Ax=b 有解B.r=n 时,方程组 Ax=b 有唯一解C.m=n 时,方程组 Ax=b 有唯一解D.rn 时,方程组 Ax=b 有无穷多个解8.设 1 , 2 , 3 是四元非齐次线性方程组 Ax=b 的三个解向量,且 r(A)=3, 1 =(1,2,3,4) T , 2 + 3 =(0,1,2,3) T ,c 表示任意常数,则线性方程组 Ax=b 的通解x=( ) (分数:2.00)A.B.C.D
5、.9.已知 A 是三阶矩阵,R(A)=1,则 =0( )(分数:2.00)A.必是 A 的二重特征值B.至少是 A 的二重特征值C.至多是 A 的二重特征值D.一重、二重、三重特征值都有可能10.已知矩阵 ,那么下列矩阵中 (分数:2.00)A.1B.2C.3D.411.设 A,B 均为 n 阶实对称矩阵,若 A 与 B 合同,则( )(分数:2.00)A.A 与 B 有相同的秩B.A 与 B 有相同的特征值C.A 与 B 有相同的特征向量D.A 与 B 有相同的行列式二、填空题(总题数:10,分数:20.00)12.在 xOy 平面上,平面曲线方程 (分数:2.00)填空项 1:_13.与矩
6、阵 (分数:2.00)填空项 1:_14.已知 1 =(1,0,0) T , 2 =(1,2,一 1) T , 3 =(一 1,1,0) T ,且 A 1 =(2,1) T ,A 2 =(一 1,1) T ,A 3 =(3,一 4) T ,则 A= 1。(分数:2.00)填空项 1:_15.已知 (分数:2.00)填空项 1:_16.设 1 =(1,2,1) T , 2 =(2,3,a) T , 3 =(1,a+2,一 2) T ,若 1 =(1,3,4) T 可以由 1 , 2 , 3 线性表示,但是 2 =(0,1,2) T 不可以由 1 , 2 , 3 线性表示,则 a= 1。(分数:2
7、.00)填空项 1:_17.已知方程组 (分数:2.00)填空项 1:_18.已知齐次线性方程组 有通解 k 1 (2,一 1,0,1) T +k 2 (3,2,1,0) T ,则方程组 (分数:2.00)填空项 1:_19.设 A 是三阶矩阵,且各行元素的和都是 5,则矩阵 A 一定有特征值 1。(分数:2.00)填空项 1:_20.已知 (分数:2.00)填空项 1:_21.二次型 f(x 1 ,x 2 ,x 3 )=x T Ax=2x 2 2 +2x 3 2 +4x 1 x 2 +8x 2 x 3 4x 1 x 3 的规范形是 1。(分数:2.00)填空项 1:_三、解答题(总题数:11
8、,分数:22.00)22.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_23.计算 n 阶行列式 (分数:2.00)_24.已知 AB=AB,证明:A,B 满足乘法交换律。(分数:2.00)_25.设向量组 1 =(1,0,1) T , 2 =(0,1,1) T , 3 =(1,3,5) T 不能由向量组 1 =(1,1,1) T , 2 =(1,2,3) T , 3 =(3,4,a) T 线性表示。 ()求 a 的值; ()将 1 , 2 , 3 由 1 , 2 , 3 线性表示。(分数:2.00)_26.设 n 元线性方程组 Ax=b,其中 (分数:2.00)_27.设
9、四元齐次线性方程组(1)为 (分数:2.00)_28.设矩阵 (分数:2.00)_29.已知 A 是三阶实对称矩阵,满足 A 4 +2A 3 +A 2 +2A=O,且秩 r(A)=2,求矩阵 A 的全部特征值,并求秩 r(A+E)。(分数:2.00)_30.设 A,B 为同阶方阵。()若 A,B 相似,证明 A,B 的特征多项式相等;()举一个二阶方阵的例子说明()的逆命题不成立;()当 A,B 均为实对称矩阵时,证明()的逆命题成立。(分数:2.00)_31.已知三元二次型 f=x T Ax 的秩为 2,且 (分数:2.00)_32.设 D= 为正定矩阵,其中 A,B 分别为 m 阶,n 阶
10、对称矩阵,C 为 mn 矩阵。 ()计算 P T DP,其中 (分数:2.00)_考研数学三(线性代数)模拟试卷 102 答案解析(总分:64.00,做题时间:90 分钟)一、选择题(总题数:11,分数:22.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.四阶行列式 (分数:2.00)A. 1 2 3 4 b 1 b 2 b 3 b 4B. 1 2 3 4 +b 1 b 2 b 3 b 4C.( 1 2 b 1 b 2 )( 3 4 b 3 b 4 )D.( 2 3 b 2 b 3 ) ( 1 4 b 1 b 4 ) 解析:解析:将此行列式按
11、第一行展开, 3.设 A 为 n 阶非零矩阵,E 为 n 阶单位矩阵。若 A 3 =O,则( )(分数:2.00)A.EA 不可逆,E+A 不可逆B.EA 不可逆,E+A 可逆C.EA 可逆,E+A 可逆 D.EA 可逆,E+A 不可逆解析:解析:已知(E 一 A)(E+A+A 2 )=EA 3 =E,(E+A)(EA+A 2 )=E+A 3 =E。故 EA,E+A均可逆。故应选 C。4.设 (分数:2.00)A.a=1 时,B 的秩必为 2B.a=1 时,B 的秩必为 1C.a1 时,B 的秩必为 1 D.a1 时,B 的秩必为 2解析:解析:当 a=1 时,易见 r(A)=1;当 a1 时
12、,则5.设 1 , 2 , s 均为 n 维向量,下列结论中不正确的是( )(分数:2.00)A.若对于任意一组不全为零的数后 k 1 ,k 2 ,k s ,都有 k 1 1 +k 2 2 +k s s 0,则 1 , 2 , s 线性无关B.若 1 , 2 , s 线性相关,则对于任意一组不全为零的数 k 1 ,k 2 ,k s ,都有 k 1 1 +k 2 2 +k s s =0 C. 1 , 2 , s 线性无关的充分必要条件是此向量组的秩为 sD. 1 , 2 , s 线性无关的必要条件是其中任意两个向量线性无关解析:解析:对于选项 A,因为齐次线性方程组 x 1 1 +x 2 2 +
13、x s s =0 只有零解,故 1 , 2 , s 线性无关,选项 A 正确。对于选项 B,由 1 , 2 , s 线性相关知,齐次线性方程组 x 1 1 +x 2 2 +x s s =0 存在非零解,但该方程组存在非零解,并不意味着任意一组不全为零的数均是它的解,因此选项 B 是错误的。选项 C 是教材中的定理。由“无关组减向量仍无关”(线性无关的向量组其任意部分组均线性无关)可知选项 D 也是正确的。综上可知,应选 B。6.已知 1 , 2 , 3 , 4 是三维非零列向量,则下列结论 若 4 不能由 1 , 2 , 3 线性表出,则 1 , 2 , 3 线性相关; 若 1 , 2 , 3
14、 线性相关, 2 , 3 , 4 线性相关,则 1 , 2 , 4 也线性相关; 若 r( 1 , 1 + 2 , 2 + 3 )=r( 4 , 1 + 4 , 2 + 4 , 3 + 4 ),则 4 可以由 1 , 2 , 3 线性表出。 其中正确的个数是( )(分数:2.00)A.0B.1C.2 D.3解析:解析:因为 1 , 2 , 3 , 4 是三维非零列向量,所以 1 , 2 , 3 , 4 必线性相关。 若 1 , 2 , 3 线性无关,则 4 必能由 1 , 2 , 3 线性表示,可知结论正确。 令 1 =(1,0,0) T , 2 =(0,1,0) T , 3 =(0,2,0)
15、 T , 4 =(0,0,1) T ,则 1 , 2 , 3 线性相关, 2 , 3 , 4 线性相关,但 1 , 2 , 4 线性无关,可知结论错误。 由于 ( 1 , 1 + 2 , 2 + 3 )( 1 , 2 , 2 + 3 )( 1 , 2 , 3 ), ( 4 , 1 + 4 , 2 + 4 , 3 + 4 )( 4 , 1 , 2 , 3 )( 1 , 2 , 3 , 4 ), 所以 r( 1 , 1 + 2 , 2 + 3 )=r( 1 , 2 , 3 ),r( 4 , 1 + 4 , 2 + 4 , 3 + 4 )=r( 1 , 2 , 3 , 4 ), 则当 r( 1 ,
16、1 + 2 , 2 + 3 )=r( 4 , 1 + 4 , 2 + 4 , 3 + 4 )时,可得 r( 1 , 2 , 3 )=r( 1 , 2 , 3 , 4 ),因此 4 可以由 1 , 2 , 3 线性表示。可知结论正确。所以选 C。7.非齐次线性方程组 Ax=b 中未知量的个数为 n,方程个数为 m,系数矩阵的秩为 r,则( )(分数:2.00)A.r=m 时,方程组 Ax=b 有解 B.r=n 时,方程组 Ax=b 有唯一解C.m=n 时,方程组 Ax=b 有唯一解D.rn 时,方程组 Ax=b 有无穷多个解解析:解析:对于选项 A,r(A)=r=m。由于 r(A|b)m=r,
17、且 r(A|b)minm,n+1=minr,n+1=r, 因此必有 r(A|b)=r,从而 r(A)=r(A|b),此时方程组有解,所以应选 A。 由 B、C、D 选项的条件均不能推得“两秩”相等。8.设 1 , 2 , 3 是四元非齐次线性方程组 Ax=b 的三个解向量,且 r(A)=3, 1 =(1,2,3,4) T , 2 + 3 =(0,1,2,3) T ,c 表示任意常数,则线性方程组 Ax=b 的通解x=( ) (分数:2.00)A.B.C. D.解析:解析:根据线性方程组解的结构性质,易知 2 1 一( 2 + 3 )=(2,3,4,5) T 。是Ax=0 的一个非零解,所以应选
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 模拟 102 答案 解析 DOC
