Assignment #3Solutions.ppt
《Assignment #3Solutions.ppt》由会员分享,可在线阅读,更多相关《Assignment #3Solutions.ppt(25页珍藏版)》请在麦多课文档分享上搜索。
1、Assignment #3 Solutions,January 24, 2006,January 24, 2006,Practical Aspects of Modern Cryptography,Problem #1,Use Fermats Little Theorem and induction on k to prove thatxk(p1)+1 mod p = x mod pfor all primes p and k 0.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #1,By induction
2、on k Base case k = 0:xk(p1)+1 mod p = x0+1 mod p = x mod p Base case k = 1:xk(p1)+1 mod p = x(p-1)+1 mod p= xp mod p = x mod p(by Fermats Little Theorem),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #1 (cont.),Inductive step:Assume that xk(p1)+1 mod p = x mod p.Prove that x(k+1)(
3、p1)+1 mod p = x mod p.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #1 (cont.),x(k+1)(p1)+1 mod p= xk(p1)+(p-1)+1 mod p= xk(p1)+1+(p-1) mod p= xk(p1)+1x(p-1) mod p= x x(p-1) mod p (by inductive hypothesis)= xp mod p= xp mod p (by Fermats Little Theorem),January 24, 2006,Practical
4、 Aspects of Modern Cryptography,Problem #2,Show that for distinct primes p and q, x mod p = y mod p x mod q = y mod qtogether imply that x mod pq = y mod pq.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #2,x mod p = y mod p (x mod p) (y mod p) = 0 (x y) mod p = 0 (by first assign
5、ment) (x y) is a multiple of p.Similarly x mod q = y mod q (x y) is a multiple of q.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #2 (cont.),Therefore, (x y) is a multiple of pq (x y) mod pq = 0 (x mod pq) (y mod pq) = 0 x mod pq = y mod pq.,January 24, 2006,Practical Aspects of
6、Modern Cryptography,Problem #3,Put everything together to prove that xK(p1)(q-1)+1 mod pq = x mod pq For K 0 and distinct primes p and q.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #3,Let k1=K(q1) and k2=K(p1).xK(p1)(q-1)+1 mod p = xk1(p1)+1 mod p = x mod p andxK(p1)(q-1)+1 mod
7、 q = xk1(q1)+1 mod q = x mod q By Problem #1, and then by Problem #2 xK(p1)(q-1)+1 mod pq = x mod pq.,January 24, 2006,Practical Aspects of Modern Cryptography,Problem #4,E(x) = x43 mod 143 Find the inverse function D(x) = xd mod 143.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASSIGNMENT3SOLUTIONSPPT
