欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Assignment #3Solutions.ppt

    • 资源ID:378649       资源大小:405.50KB        全文页数:25页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Assignment #3Solutions.ppt

    1、Assignment #3 Solutions,January 24, 2006,January 24, 2006,Practical Aspects of Modern Cryptography,Problem #1,Use Fermats Little Theorem and induction on k to prove thatxk(p1)+1 mod p = x mod pfor all primes p and k 0.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #1,By induction

    2、on k Base case k = 0:xk(p1)+1 mod p = x0+1 mod p = x mod p Base case k = 1:xk(p1)+1 mod p = x(p-1)+1 mod p= xp mod p = x mod p(by Fermats Little Theorem),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #1 (cont.),Inductive step:Assume that xk(p1)+1 mod p = x mod p.Prove that x(k+1)(

    3、p1)+1 mod p = x mod p.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #1 (cont.),x(k+1)(p1)+1 mod p= xk(p1)+(p-1)+1 mod p= xk(p1)+1+(p-1) mod p= xk(p1)+1x(p-1) mod p= x x(p-1) mod p (by inductive hypothesis)= xp mod p= xp mod p (by Fermats Little Theorem),January 24, 2006,Practical

    4、 Aspects of Modern Cryptography,Problem #2,Show that for distinct primes p and q, x mod p = y mod p x mod q = y mod qtogether imply that x mod pq = y mod pq.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #2,x mod p = y mod p (x mod p) (y mod p) = 0 (x y) mod p = 0 (by first assign

    5、ment) (x y) is a multiple of p.Similarly x mod q = y mod q (x y) is a multiple of q.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #2 (cont.),Therefore, (x y) is a multiple of pq (x y) mod pq = 0 (x mod pq) (y mod pq) = 0 x mod pq = y mod pq.,January 24, 2006,Practical Aspects of

    6、Modern Cryptography,Problem #3,Put everything together to prove that xK(p1)(q-1)+1 mod pq = x mod pq For K 0 and distinct primes p and q.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #3,Let k1=K(q1) and k2=K(p1).xK(p1)(q-1)+1 mod p = xk1(p1)+1 mod p = x mod p andxK(p1)(q-1)+1 mod

    7、 q = xk1(q1)+1 mod q = x mod q By Problem #1, and then by Problem #2 xK(p1)(q-1)+1 mod pq = x mod pq.,January 24, 2006,Practical Aspects of Modern Cryptography,Problem #4,E(x) = x43 mod 143 Find the inverse function D(x) = xd mod 143.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer

    8、#4,143 = 1113 We need to find d such that 43d mod (111)(131) = 1.Use the Extended Euclidean Algorithm to find a solution to find x and y such that 120x + 43y = 1.,January 24, 2006,Practical Aspects of Modern Cryptography,Extended Euclidean Algorithm,Given A,B 0, set x1=1, x2=0, y1=0, y2=1, a1=A, b1=

    9、B, i=1.Repeat while bi0: i = i + 1; qi = ai-1 div bi-1; bi = ai-1-qibi-1; ai = bi-1;xi+1=xi-1-qixi; yi+1=yi-1-qiyi.For all i: Axi + Byi = ai. Final ai = gcd(A,B).,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Ans

    10、wer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography

    11、,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Problem #5,Digital Signature AlgorithmPublic parameters: q = 11, p = 67, g = 9, y = 62 Private secret: x = 4 Message to be signed: M = 8 Selected r

    12、andom parameter: k = 2,January 24, 2006,Practical Aspects of Modern Cryptography,The Digital Signature Algorithm,To sign a 160-bit message M, Generate a random integer k with 0 k q, Compute r = (gk mod p) mod q, Compute s = (M+xr)/k) mod q.The pair (r,s) is the signature on M.,January 24, 2006,Pract

    13、ical Aspects of Modern Cryptography,Answer #5,r = (gk mod p) mod q= (92 mod 67) mod 11= (81 mod 67) mod 11 = 14 mod 11 = 3 s = (M+xr)/k) mod q= (8+43)/2) mod 11= (20/2) mod 11 = 10 mod 11 = 10 The pair (3,10) is the signature on 8.,January 24, 2006,Practical Aspects of Modern Cryptography,The Digita

    14、l Signature Algorithm,A signature (r,s) on M is verified as follows: Compute w = 1/s mod q, Compute a = wM mod q, Compute b = wr mod q, Compute v = (gayb mod p) mod q.Accept the signature only if v = r.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #5 (cont.),w = 1/s mod q = 1/10 mod 11 = 10 a = wM mod q = 108 mod 11 = 3 b = wr mod q = 103 mod 11 = 8 v = (93628 mod 67) mod 11= (5915 mod 67) mod 11= 14 mod 11 = 3v = 3 and r = 3 so the signature is validated.,


    注意事项

    本文(Assignment #3Solutions.ppt)为本站会员(eventdump275)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开