Introduction to ILP.ppt
《Introduction to ILP.ppt》由会员分享,可在线阅读,更多相关《Introduction to ILP.ppt(32页珍藏版)》请在麦多课文档分享上搜索。
1、Introduction to ILP,ILP = Inductive Logic Programming = machine learning logic programming = learning with logic,Introduced by Muggleton in 1992,(Machine) Learning,The process by which relatively permanent changes occur in behavioral potential as a result of experience. (Anderson) Learning is constr
2、ucting or modifying representations of what is being experienced. (Michalski) A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. (Mitchell),Machine Lear
3、ning Techniques,Decision tree learning Conceptual clustering Case-based learning Reinforcement learning Neural networks Genetic algorithms and Inductive Logic Programming,Why ILP ? - Structured data,Seed example of East-West trains (Michalski)What makes a train to go eastward ?,Why ILP ? Structured
4、data,Mutagenicity of chemical molecules (King, Srinivasan, Muggleton, Sternberg, 1994)What makes a molecule to be mutagenic ?,Why ILP ? multiple relations,This is related to structured data,has_car,car_properties,Why ILP ? multiple relations,Genealogy example: Given known relations father(Old,Young)
5、 and mother(Old,Young) male(Somebody) and female(Somebody) learn new relations parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y). brother(X,Y) :-male(X),father(Z,X),father(Z,Y).Most ML techniques cant use more than 1 relation e.g.: decision trees, neural networks, ,Why ILP ? logical foundation,
6、Prolog = Programming with Logicis used to represent: Background knowledge (of the domain): facts Examples (of the relation to be learned): facts Theories (as a result of learning): rules Supports 2 forms of logical reasoning Deduction Induction,Prolog - definitions,Variables: X, Y, Something, Somebo
7、dy Terms: arthur, 1, 1,2,3 Predicates: father/2, female/1Facts: father(christopher,victoria). female(victoria). Rules: parent(X,Y) :- father(X,Y).,Logical reasoning: deduction,From rules to facts,B T |- E,mother(penelope,victoria). mother(penelope,arthur). father(christopher,victoria). father(christ
8、opher,arthur).,parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y).,parent(penelope,victoria). parent(penelope,arthur). parent(christopher,victoria). parent(christopher,arthur).,Logical reasoning: induction,From facts to rules,B E |- T,mother(penelope,victoria). mother(penelope,arthur). father(ch
9、ristopher,victoria). father(christopher,arthur).,parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y).,parent(penelope,victoria). parent(penelope,arthur). parent(christopher,victoria). parent(christopher,arthur).,Induction of a classifier or Concept Learning,Most studied task in Machine Learning G
10、iven: background knowledge B a set of training examples E a classification c C for each example e Find: a theory T (or hypothesis) such that B T |- c(e), for all e E,Induction of a classifier: example,Example of East-West trains B: relations has_car and car_properties (length, roof, shape, etc.)ex.:
11、 has_car(t1,c11), shape(c11,bucket) E: the trains t1 to t10 C: east, west,Why ILP ? - Structured data,Seed example of East-West trains (Michalski)What makes a train to go eastward ?,Induction of a classifier: example,Example of East-West trains B: relations has_car and car_properties (length, roof,
12、shape, etc.)ex.: has_car(t1,c11) E: the trains t1 to t10 C: east, west,Possible T: east(T) :-has_car(T,C), length(C,short), roof(C,_).,Induction of a classifier: example,Example of mutagenicity B: relations atom and bondex.: atom(mol23,atom1,c,195). bond(mol23,atom1,atom3,7). E: 230 molecules with k
13、nown classification C: active and nonactive w.r.t. mutagenicityPossible T:active(Mol) :-atom(Mol,A,c,22), atom(Mol,B,c,10),bond(Mol,A,B,1).,c22,c10,Learning as search,Given: Background knowledge B Theory Description Language T Positives examples P (class +) Negative examples N (class -) A covering r
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- INTRODUCTIONTOILPPPT
