欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Introduction to ILP.ppt

    • 资源ID:376667       资源大小:187KB        全文页数:32页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Introduction to ILP.ppt

    1、Introduction to ILP,ILP = Inductive Logic Programming = machine learning logic programming = learning with logic,Introduced by Muggleton in 1992,(Machine) Learning,The process by which relatively permanent changes occur in behavioral potential as a result of experience. (Anderson) Learning is constr

    2、ucting or modifying representations of what is being experienced. (Michalski) A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. (Mitchell),Machine Lear

    3、ning Techniques,Decision tree learning Conceptual clustering Case-based learning Reinforcement learning Neural networks Genetic algorithms and Inductive Logic Programming,Why ILP ? - Structured data,Seed example of East-West trains (Michalski)What makes a train to go eastward ?,Why ILP ? Structured

    4、data,Mutagenicity of chemical molecules (King, Srinivasan, Muggleton, Sternberg, 1994)What makes a molecule to be mutagenic ?,Why ILP ? multiple relations,This is related to structured data,has_car,car_properties,Why ILP ? multiple relations,Genealogy example: Given known relations father(Old,Young)

    5、 and mother(Old,Young) male(Somebody) and female(Somebody) learn new relations parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y). brother(X,Y) :-male(X),father(Z,X),father(Z,Y).Most ML techniques cant use more than 1 relation e.g.: decision trees, neural networks, ,Why ILP ? logical foundation,

    6、Prolog = Programming with Logicis used to represent: Background knowledge (of the domain): facts Examples (of the relation to be learned): facts Theories (as a result of learning): rules Supports 2 forms of logical reasoning Deduction Induction,Prolog - definitions,Variables: X, Y, Something, Somebo

    7、dy Terms: arthur, 1, 1,2,3 Predicates: father/2, female/1Facts: father(christopher,victoria). female(victoria). Rules: parent(X,Y) :- father(X,Y).,Logical reasoning: deduction,From rules to facts,B T |- E,mother(penelope,victoria). mother(penelope,arthur). father(christopher,victoria). father(christ

    8、opher,arthur).,parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y).,parent(penelope,victoria). parent(penelope,arthur). parent(christopher,victoria). parent(christopher,arthur).,Logical reasoning: induction,From facts to rules,B E |- T,mother(penelope,victoria). mother(penelope,arthur). father(ch

    9、ristopher,victoria). father(christopher,arthur).,parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y).,parent(penelope,victoria). parent(penelope,arthur). parent(christopher,victoria). parent(christopher,arthur).,Induction of a classifier or Concept Learning,Most studied task in Machine Learning G

    10、iven: background knowledge B a set of training examples E a classification c C for each example e Find: a theory T (or hypothesis) such that B T |- c(e), for all e E,Induction of a classifier: example,Example of East-West trains B: relations has_car and car_properties (length, roof, shape, etc.)ex.:

    11、 has_car(t1,c11), shape(c11,bucket) E: the trains t1 to t10 C: east, west,Why ILP ? - Structured data,Seed example of East-West trains (Michalski)What makes a train to go eastward ?,Induction of a classifier: example,Example of East-West trains B: relations has_car and car_properties (length, roof,

    12、shape, etc.)ex.: has_car(t1,c11) E: the trains t1 to t10 C: east, west,Possible T: east(T) :-has_car(T,C), length(C,short), roof(C,_).,Induction of a classifier: example,Example of mutagenicity B: relations atom and bondex.: atom(mol23,atom1,c,195). bond(mol23,atom1,atom3,7). E: 230 molecules with k

    13、nown classification C: active and nonactive w.r.t. mutagenicityPossible T:active(Mol) :-atom(Mol,A,c,22), atom(Mol,B,c,10),bond(Mol,A,B,1).,c22,c10,Learning as search,Given: Background knowledge B Theory Description Language T Positives examples P (class +) Negative examples N (class -) A covering r

    14、elation covers(B,T,e) Find: a theory that covers all positive examples (completeness) no negative examples (consistency),Learning as search,Covering relation in ILP covers(B,T,e) B T |- e A theory is a set of rules Each rule is searched separately (efficiency) A rule must be consistent (cover no neg

    15、atives), but not necessary complete Separate-and-conquer strategy Remove from P the examples already covered,Space exploration,Strategy? Random walk Redundancy, incompleteness of the search Systematic according to some ordering Better control = no redundancy, completeness The ordering may be used to

    16、 guide the search towards better rulesWhat kind of ordering?,Generality ordering,Rule 1 is more general than rule 2 = Rule 1 covers more examples than rule 2 If a rule is consistent (covers no negatives)then every specialisation of it is consistent too If a rule is complete (covers all positives)the

    17、n every generalisation of it is complete too Means to prune the search space 2 kinds of moves: specialisation and generalisation Common ILP ordering: -subsumption,Generality ordering,parent(X,Y):-,parent(X,Y):- female(X),parent(X,Y) :- father(X,Y),parent(X,Y) :- female(X), mother(X,Y),parent(X,Y) :-

    18、 female(X), father(X,Y),consistent rule,specialisation,Search biases,“Bias refers to any criterion for choosing one generalization over another other than strict consistency with the observed training instances.” (Mitchell) Restrict the search space (efficiency) Guide the search (given domain knowle

    19、dge) Different kinds of bias Language bias Search bias Strategy bias,Choice of predicates:roof(C,flat) ? roof(C) ? flat(C) ? Types of predicates :east(T) :- roof(T), roof(C,3) Modes of predicates :east(T) :- roof(C,flat)east(T) :- has_car(T,C), roof(C,flat) Discretization of numerical values,Languag

    20、e bias,Search bias,The moves direction in the search space Top-down start: the empty rule (c(X) :- .) moves: specialisations Bottom-up start: the bottom clause ( c(X) :- B.) moves: generalisations Bi-directional,Strategy bias,Heuristic search for a best rule Hill-climbing: Keep only one rule efficie

    21、nt but can miss global maximum Beam search: also keep k rules for back-tracking less greedy Best-first search: keep all rules more costly but complete search,A generic ILP algorithm,procedure ILP(Examples)Initialize(Rules, Examples) repeatR = Select(Rules, Examples)Rs = Refine(R, Examples)Rules = Re

    22、duce(Rules+Rs, Examples) until StoppingCriterion(Rules, Examples) return(Rules),A generic ILP algorithm,Initialize(Rules,Examples): initialize a set of theories as the search starting points Select(Rules,Examples): select the most promising candidate rule R Refine(R,Examples): returns the neighbours

    23、 of R (using specialisation or generalisation) Reduce(Rules,Examples): discard unpromising theories (all but one in hill-climbing, none in best-first search),ILPnet2 www.cs.bris.ac.uk/ILPnet2/,Network of Excellence in ILP in Europe 37 universities and research institutes Educational materials Public

    24、ations Events (conferences, summer schools, ) Description of ILP systems Applications,ILP systems,FOIL (Quinlan and Cameron-Jones 1993): top-down hill-climbing search Progol (Muggleton, 1995): top-down best-first search with bottom clause Golem (Muggleton and Feng 1992): bottom-up hill-climbing sear

    25、ch LINUS (Lavrac and Dzeroski 1994): propositionalisation Aleph (Progol), Tilde (relational decision trees), ,ILP applications,Life sciences mutagenecity, predicting toxicology protein structure/folding Natural language processing english verb past tense document analysis and classification Engineer

    26、ing finite element mesh design Environmental sciences biodegradability of chemical compounds,The end,A few books on ILP J. Lloyd. Logic for learning: learning comprehensible theories from structured data. 2003. S. Dzeroski and N. Lavrac, editors. Relational Data Mining. September 2001. L. De Raedt, editor. Advances in Inductive Logic Programming. 1996. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applications. 1994.,


    注意事项

    本文(Introduction to ILP.ppt)为本站会员(amazingpat195)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开