2018年高中数学第三章导数应用3.2.2最大值、最小值问题课件4北师大版选修2_2.ppt
《2018年高中数学第三章导数应用3.2.2最大值、最小值问题课件4北师大版选修2_2.ppt》由会员分享,可在线阅读,更多相关《2018年高中数学第三章导数应用3.2.2最大值、最小值问题课件4北师大版选修2_2.ppt(10页珍藏版)》请在麦多课文档分享上搜索。
1、函数的最大值与最小值,(1)明确闭区间a,b上的连续函数f(x),在a,b上必有最大、最小值 (2)理解上述函数的最值存在的可能位置 (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤,学习重点:会求闭区间上的连续函数的最值.,学习难点:发现闭区间上的连续函数f (x)的最值只可能存在于极值点处或区间端点处.,一、复习与引入,1.当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方法是:如果在x0附近的左侧 右侧 ,那么,f(x0)是极大值;如果在x0附近的左侧 右侧 ,那么,f(x0) 是极小值.,2.导数为零的点是该点为极值点的必要条件,而不是充分条件.极值只能在函数不可导
2、的点或导数为零的点取到.,3.在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小,而不是极值.,二、新课函数的最值,观察右边一个定义在区间a,b上的函数y=f(x)的图象.,发现图中_是极小值,_是极大值,在区间上的函数的最大值是_,最小值是_。,问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?,导数的应用-求函数最值.,(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个为最小值.,求f(x)在闭区间a,b上的最值的步骤,(1)求f(x)在区间(a,b)内极值(极大值或极小值),
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年高 数学 第三 导数 应用 322 最大值 最小值 问题 课件 北师大 选修 _2PPT
