欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    2018年高中数学第三章导数应用3.2.2最大值、最小值问题课件4北师大版选修2_2.ppt

    • 资源ID:1150345       资源大小:850.50KB        全文页数:10页
    • 资源格式: PPT        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年高中数学第三章导数应用3.2.2最大值、最小值问题课件4北师大版选修2_2.ppt

    1、函数的最大值与最小值,(1)明确闭区间a,b上的连续函数f(x),在a,b上必有最大、最小值 (2)理解上述函数的最值存在的可能位置 (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤,学习重点:会求闭区间上的连续函数的最值.,学习难点:发现闭区间上的连续函数f (x)的最值只可能存在于极值点处或区间端点处.,一、复习与引入,1.当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方法是:如果在x0附近的左侧 右侧 ,那么,f(x0)是极大值;如果在x0附近的左侧 右侧 ,那么,f(x0) 是极小值.,2.导数为零的点是该点为极值点的必要条件,而不是充分条件.极值只能在函数不可导

    2、的点或导数为零的点取到.,3.在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小,而不是极值.,二、新课函数的最值,观察右边一个定义在区间a,b上的函数y=f(x)的图象.,发现图中_是极小值,_是极大值,在区间上的函数的最大值是_,最小值是_。,问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?,导数的应用-求函数最值.,(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个为最小值.,求f(x)在闭区间a,b上的最值的步骤,(1)求f(x)在区间(a,b)内极值(极大值或极小值),

    3、求函数的最值时,应注意以下几点:,(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.,(2)闭区间a,b上的连续函数一定有最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.,(3)函数在其定义域上的最大值与最小值至多各有一个, 而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).,展示安排及要求,高效点评、拓展提升、大胆质疑,课堂小结: 回扣目标 总结收获 评出优秀小组和个人,设函数f(x)在a,b上连续,在(a,b)内可导,求f(x

    4、)在a,b上的最大值与最小值的步骤如下:,(2)将f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值,(1)求f(x)在(a,b)内的极值;,总结求最值的步骤,上述步骤建议列表完成,五、小结,1.求在a,b上连续,(a,b)上可导的函数f(x)在a,b上的最值的步骤:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.,2.求函数的最值时,应注意以下几点:,(1)要正确区分极值与最值这两个概念.,(2)在a,b上连续,(a,b)上可导的函数f(x)在(a,b)内未必有最大值与最小值.,


    注意事项

    本文(2018年高中数学第三章导数应用3.2.2最大值、最小值问题课件4北师大版选修2_2.ppt)为本站会员(visitstep340)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开