2019年高考数学总复习典型例题突破(压轴题系列)专题02导数与零点个数.doc
《2019年高考数学总复习典型例题突破(压轴题系列)专题02导数与零点个数.doc》由会员分享,可在线阅读,更多相关《2019年高考数学总复习典型例题突破(压轴题系列)专题02导数与零点个数.doc(9页珍藏版)》请在麦多课文档分享上搜索。
1、1专题 02 导数与零点个数导数与零点个数,对于考生来讲中等偏难,基本的思路是利用导数分析函数的单调性,确定函数的极值或最值,作出函数的大致图像,再数形结合可求得结果。【题型示 例】1、设 为实数,函数(1)求 的极值点;(2)如果曲线 与 轴仅有一个交点,求实数 的取值范围【答案】(1) 的极大值点为 ,极小值点为 (2) 或 2、已知函数 .(1)求 的极值;(2)若函数 的图象与函数 的图象在区间 上有公共点,求实数 的取值范围.【答案】(1)极大值 ,无极小值;(2) .【解析】(1) 的 定义域为 , ,令 得 ,2当 时, , 是增函数;当 时, , 是减函数,所以 在 处取得极大
2、值,无极小值.(2)当 时,即 时,由 (1)知 在 上是增函数,在 上是减函数, 所以 ,因为 的图象与 的图象在 上有公共点, 所以 ,解得 ,又 ,所以 . 当 时,即 时, 在 上是增函数,所以 在 上最大值为 ,所以原问题等价于 ,解得 .又 ,所以此时 无解 . 综上,实数 的取值范围是 .3、设函数 (其中 )()求函数 的极值;()求函数 在 上的最小值;()若 ,判断函数 零点个数【答案】(1)极小值 ,不存在极大值;(2)(3)1 个【解析】() ,3由 得 ,由 得 ,在 单调递增,在 单调递减极小值 ,不存在极大值() 由()知, 在 单调递增,在 单调递减 当 时,
3、在 单调递减, 单调递增, 当 时, 在 单调递增,;() 由题意求导得 ,由 得 或 ,由 得所以 在 上单调递增,在 上单调递减当 时, ,故函数 只有一个零点4、已知函数 .(I)若 ,求 的极值;(II)若 ,函数 有且只有一个零点,求实数 的取值范围.【答案】(I) 的极小值为 ;(II) 或 .【解析】(I) 时, ,其中则 得当 时 , 单调递减,当 时 , 单调递增,因而 的极小值为 ;4(II)若 有且只有一个零点,即方程 在 上有且只有一个实数根,分离参数得 ,设 ,则 ,又设 , ,而因而当 时 ,当 时 ,那么当 时 , 单调递增,当 时 , 单调递减, ,又 时 ,且
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 复习 典型 例题 突破 压轴 系列 专题 02 导数 零点 个数 DOC
