欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    2019年高考数学总复习典型例题突破(压轴题系列)专题02导数与零点个数.doc

    • 资源ID:938901       资源大小:775.50KB        全文页数:9页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年高考数学总复习典型例题突破(压轴题系列)专题02导数与零点个数.doc

    1、1专题 02 导数与零点个数导数与零点个数,对于考生来讲中等偏难,基本的思路是利用导数分析函数的单调性,确定函数的极值或最值,作出函数的大致图像,再数形结合可求得结果。【题型示 例】1、设 为实数,函数(1)求 的极值点;(2)如果曲线 与 轴仅有一个交点,求实数 的取值范围【答案】(1) 的极大值点为 ,极小值点为 (2) 或 2、已知函数 .(1)求 的极值;(2)若函数 的图象与函数 的图象在区间 上有公共点,求实数 的取值范围.【答案】(1)极大值 ,无极小值;(2) .【解析】(1) 的 定义域为 , ,令 得 ,2当 时, , 是增函数;当 时, , 是减函数,所以 在 处取得极大

    2、值,无极小值.(2)当 时,即 时,由 (1)知 在 上是增函数,在 上是减函数, 所以 ,因为 的图象与 的图象在 上有公共点, 所以 ,解得 ,又 ,所以 . 当 时,即 时, 在 上是增函数,所以 在 上最大值为 ,所以原问题等价于 ,解得 .又 ,所以此时 无解 . 综上,实数 的取值范围是 .3、设函数 (其中 )()求函数 的极值;()求函数 在 上的最小值;()若 ,判断函数 零点个数【答案】(1)极小值 ,不存在极大值;(2)(3)1 个【解析】() ,3由 得 ,由 得 ,在 单调递增,在 单调递减极小值 ,不存在极大值() 由()知, 在 单调递增,在 单调递减 当 时,

    3、在 单调递减, 单调递增, 当 时, 在 单调递增,;() 由题意求导得 ,由 得 或 ,由 得所以 在 上单调递增,在 上单调递减当 时, ,故函数 只有一个零点4、已知函数 .(I)若 ,求 的极值;(II)若 ,函数 有且只有一个零点,求实数 的取值范围.【答案】(I) 的极小值为 ;(II) 或 .【解析】(I) 时, ,其中则 得当 时 , 单调递减,当 时 , 单调递增,因而 的极小值为 ;4(II)若 有且只有一个零点,即方程 在 上有且只有一个实数根,分离参数得 ,设 ,则 ,又设 , ,而因而当 时 ,当 时 ,那么当 时 , 单调递增,当 时 , 单调递减, ,又 时 ,且

    4、 时从而 或 ,即 或 时函数 有且只有一个零点.【题型专练】1、已知函数 .(1)当 时,求 的极值;(2)若函数 有两个零点,求实数 的取值范围.【答案】(1) 有得极大值 ,无 极小值;(2) .2、设函数 , .关于 的方程 在区间 上有解,求 的取值范围;5【答案】 的取值范围 .【解析】方程 即为 ,令 ,则 ,当 时, , 随 变化情况如表:, , ,当 时, , 的取值范围 .3、已知函数 .(1)求函数 的单调区间;(2)若当 时(其中 ),不等式 恒成立,求实数 的取值范围;(3)若关于 的方程 在区间 上恰好有两个相异的实根,求实数 的取值范围.【答案】(1) 的单调减区

    5、间为 ,增区间 ;(2) ;(3) .【解析】 ,所以(1) ,令 , 得: ,所以 的单调减区间为 ,增区间 ;6(2)由(1)知 , 得 ,函数 在 上是连续的,又所以,当 时, 的最大值为故 时,若使 恒成立,则(3)原问题可转化为:方程 在区间 上恰有两个相异实根.令 ,则 ,令 ,解得: .当 时, 在区间 上单调递减,当 时, 在区间 上单调递增.在 和 处连续,又且 当 时, 的最大值是 , 的最小值是在区间 上方程 恰好有两个相异的实根时,实 数 的取值范围是:4、设函数 ,其中 为实数.(1)若 在 上是单调减函数, 且 在 上有最小值, 求 的取值范围;(2)若 在 上是单

    6、调增函数, 试求 的零点个数, 并证明你的结论.【答案】() ;()当 或 时, 有 个零点,当 时, 有 个零点,证明见解析7(2) 在 上恒成立, 则 ,故 .若 , 令 得增区间为 ;令 得减区间为 ,当 时, ;当 时, ;当 时, ,当且仅当 时取等号. 故: 时, 有 个 零点;当 时, 有 个零点.5、已知函数 在 处的切线斜率为 2.(1)求 的单调区间和极值;(2)若 在 上无解,求 的取值范围.【答案】(1)函数 的单调递增区间为 ,单调递减区间为 和 .函数的极小值为 ,极大值为 .(2)8【解析】(1) , , ,令 ,解得 或 当 变化时, 的变化情况如下表:函数 的单调递增区间为 ,单调递减区间为 和 .函数的极小值为 ,极大值为 .(2)令 , 在 上无解, 在 上恒成立, ,记 , 在 上恒成立, 在 上单调递减, ,若 ,则 , ,9 单调递减, 恒成 立,若 ,则 ,存在 ,使得 ,当 时, ,即 , 在 上单调递增, , 在 上成立,与已知矛盾,故舍去, 综上可知, .


    注意事项

    本文(2019年高考数学总复习典型例题突破(压轴题系列)专题02导数与零点个数.doc)为本站会员(sumcourage256)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开