An Overview of Bayesian Network-basedRetrieval Models.ppt
《An Overview of Bayesian Network-basedRetrieval Models.ppt》由会员分享,可在线阅读,更多相关《An Overview of Bayesian Network-basedRetrieval Models.ppt(49页珍藏版)》请在麦多课文档分享上搜索。
1、An Overview of Bayesian Network-based Retrieval Models,Juan Manuel Fernndez Luna Departamento de InformticaUniversidad de Janjmflunaujaen.es,Department of Computing Science, University of GlasgowOctober, 21th - 2002,Bayesian Network-based Retrieval Models,2,Layout,Introduction Introduction to Belief
2、 Networks Bayesian Network-based IR Models Inference Network Model Belief Network Model Bayesian Network Retrieval Model Relevance Feedback Other applications Bibliography,Bayesian Network-based Retrieval Models,3,Introduction,Query and document characterizations are incomplete. The query is a vague
3、 description of the users information need. Computing relevance degree: 1 and 2 +A) different representations that a concept may have, B) these concepts are not independent among them.,Information Retrieval Uncertain process,Bayesian Network-based Retrieval Models,4,Introduction,Probabilistic models
4、 tried to overcome these problems,Researchers focused their attention on Belief networks in order to apply them to IR because:,They show a high performance in actual problems characterised by uncertainty.,Bayesian Network-based Retrieval Models,5,Introduction to Belief Networks,Graphical models able
5、 to represent and efficiently manipulate n-dimensional probability distributions.The knowledge obtained from a problem is encoded in a Belief network by means of the quantitative and qualitative componets:,Bayesian Network-based Retrieval Models,6,Introduction to Belief Networks,Qualitative part: Di
6、rected Acyclic Graph.G=(V,E): V (Nodes) Random variables, and E (Arcs) (In)dependence relationships.,Bayesian Network-based Retrieval Models,7,Introduction to Belief Networks,Quantitative part A set of conditional distributions: Drawn from the graph structure, representing the strength of the relati
7、onships, stored in each node.,Belief Network Bayesian Network (Conditional probability distributions),Bayesian Network-based Retrieval Models,8,Introduction to Belief Networks,Bayesian Network-based Retrieval Models,9,Introduction to Belief Networks,Taking into account these (in)dependences, the joi
8、nt probability distribution could be restored from the network:,Pa(Xi) being the set of parents of the variable Xi. This previous expression implies an important saving in the storage space.,Bayesian Network-based Retrieval Models,10,Introduction to Belief Networks,Construction: Manual, using an exp
9、erts knowledge. Automatic, by means of a learning algorithm.,Inference: Given a set of evidences, E, to obtain the probability with which a variable can take a certain value.p(S=T | W=T)=0.430, p(R=T| W=T)= 0.708,Bayesian Network-based Retrieval Models,11,Bayesian Network-based IR Models,Inference N
10、etwork Model Belief Network Model Peter Bruzas Index Belief Expressions Maria Indrawan et al.s Model Bayesian Network Retrieval Model,Bayesian Network-based Retrieval Models,12,inn,Link Matrices,Inference: Instantiating each document, dj, and computing p(inn | dj).,Inference Network Model,Bayesian N
11、etwork-based Retrieval Models,13,Belief Network Model,Q,2M assigments unfeasible Probabilities are defined in such a way that only one configuration is evaluated,Bayesian Network-based Retrieval Models,14,Bayesian Network Retrieval Model,There are strong relationships among a document and the terms
12、that index it. Document relationships are only present by means of the terms that index them. Documents are conditional independent given the terms by which they were indexed.,Guidelines to build the BNR Model:,Bayesian Network-based Retrieval Models,15,Bayesian Network Retrieval Model,Ti ti, ti,Dj
13、dj, dj,Bayesian Network-based Retrieval Models,16,Bayesian Network Retrieval Model,All the terms are independent among them: Simple Bayesian Network Retrieval Model,Bayesian Network-based Retrieval Models,17,Bayesian Network Retrieval Model,Probability Distributions: Term nodes: p(tj)=1/M, p(tj)=1-p
14、(tj) Document nodes: p(Dj | Pa(Dj), Dj,But. If a document has been indexed by 30 terms, we need to estimate and store 230 probabilities.,Problem!,Bayesian Network-based Retrieval Models,18,Bayesian Network Retrieval Model,Solution:,Probability functions,pa(Dj) being a configuration of the parents of
15、 Dj.,Bayesian Network-based Retrieval Models,19,Bayesian Network Retrieval Model,Retrieval:,Instantiate TQ Q to Relevant. Run a propagation algorithm in the network. Rank the documents according p(dj | Q), Dj,Problem:,Great amount of nodes and existing cycles in the graph,General purpose propagation
16、 algorithms cant be applied due to efficiency considerations.,Bayesian Network-based Retrieval Models,20,Bayesian Network Retrieval Model,Solution: Taking advantage of: The kind of probability function used, and The topology.Propagation is substituted by,Evaluation of the probability function in eac
17、h document node,Bayesian Network-based Retrieval Models,21,Bayesian Network Retrieval Model,Result: An efficient and exact propagation.,Including Query term frequencies:,Bayesian Network-based Retrieval Models,22,Bayesian Network Retrieval Model,Removing the term independency restricction: We are in
18、terested in representing the main relationships among terms in the collection.,Term subnetwork Polytree,Why? There is a set of efficient learning and propagation algorithms available for this topology.,Bayesian Network-based Retrieval Models,23,Bayesian Network Retrieval Model,Bayesian Network-based
19、 Retrieval Models,24,Bayesian Network Retrieval Model,Probability distributions:Marginal Distributions (root term nodes):,(M being the number of terms in the collection),Bayesian Network-based Retrieval Models,25,Bayesian Network Retrieval Model,Conditional Distributions (document nodes): Probabilit
20、y functions,Conditional Distributions (term nodes with parents): (based on Jaccards coefficient),Bayesian Network-based Retrieval Models,26,Bayesian Network Retrieval Model,Retrieval: TqQ Relevant p(dj|Q)?,But. Due to the complexity of the whole network we can not run an exact propagation algorithm.
21、,Solution: PROPAGATION + EVALUATION,Bayesian Network-based Retrieval Models,27,Bayesian Network Retrieval Model,Propagation:Running the exact Pearls propagation algorithm in the polytree (term subnetwork), p(ti|Q), Ti, are computed.Evaluation:Evaluation of a probability function in the Document Subn
22、etwork, computing p(dj|Q), Dj, incorporating p(ti|Q).,Bayesian Network-based Retrieval Models,28,Bayesian Network Retrieval Model,Given a document, Dj:Compute p(dj|di), Di. Select those documents with greatest probability of relevance with respect to Dj. Link Dj with all these documents.,Adding docu
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANOVERVIEWOFBAYESIANNETWORKBASEDRETRIEVALMODELSPPT

链接地址:http://www.mydoc123.com/p-378324.html