Ch 12. continuous latent variables Pattern Recognition and .ppt
《Ch 12. continuous latent variables Pattern Recognition and .ppt》由会员分享,可在线阅读,更多相关《Ch 12. continuous latent variables Pattern Recognition and .ppt(14页珍藏版)》请在麦多课文档分享上搜索。
1、Ch 12. continuous latent variables Pattern Recognition and Machine Learning, C. M. Bishop, 2006.,Summarized by Soo-Jin KimBiointelligence Laboratory, Seoul National University http:/bi.snu.ac.kr/,2,(C) 2007, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Contents,12.1 Principle Component Analysis 12.1
2、.1 Maximum variance formulation 12.1.2 Minimum-error formulation 12.1.3 Application of PCA 12.1.4 PCA for high-dimensional data,3,(C) 2007, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,12.1 Principal Component Analysis,Principal Component Analysis (PCA) PCA is used for applications such as dimension
3、ality reduction, lossy data compression, feature extraction and data visualization. Also known as Karhunen-Loeve transform PCA can be defined as the orthogonal projection of the data onto a lower dimensional linear space, known as the principal subspace, such that the variance of the projected data
4、is maximized.,Principal subspace,Orthogonal projection of the data points,The subspace maximizes the variance of the projected points,Minimizing the sum-of-squares of the projection errors,4,(C) 2007, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,12.1.1 Maximum variance formulation (1/2),Consider dat
5、a set of observations xn where n = 1,N, and xn is a Euclidean variable with dimensionality D. To project the data onto a space having dimensionality MD while maximizing the variance of the projected data. One-dimensional space (M=1) Define the direction of this space using a D-dimensional vector u1
6、The mean of the projected data is where is the sample set mean given byThe variance of the projected data is given by,Maximize the projected variance,S is the data covariance matrix,5,(C) 2007, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,12.1.1 Maximum variance formulation (2/2),Lagrange multiplier
7、 Make an unconstrained maximization of (u1 must be an eigenvector of S) The variance will be maximum when we set u1 equal to the eigenvector having the largest eigenvalue 1.PCA involves evaluating the mean x and the covariance matrix S of the data set and then finding the M eigenvectors of S corresp
8、onding to the M largest eigenvalues. The cost of computing the full eigenvector decomposition for a matrix of size D x D is O(D3),(this eigenvector is the first principal component),6,(C) 2007, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,12.1.2 Minimum-error formulation (1/4),Based on projection er
9、ror minimization A complete orthogonal set of D-dimensional basis vectors ui where i = 1,D that satisfy Each data point can be represented exactly by a linear combination of the basis vectorsTo approximate this data point using a representation involving a restricted number MD of variables correspon
10、ding to projection onto a lower-dimensional subspace.,coefficient,(Without loss of generality),7,(C) 2007, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,12.1.2 Minimum-error formulation (2/4),We approximate each data point xn byDistortion measure the squared distance between the original data point x
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CH12CONTINUOUSLATENTVARIABLESPATTERNRECOGNITIONANDPPT

链接地址:http://www.mydoc123.com/p-379440.html