Bayesian Belief Propagation.ppt
《Bayesian Belief Propagation.ppt》由会员分享,可在线阅读,更多相关《Bayesian Belief Propagation.ppt(25页珍藏版)》请在麦多课文档分享上搜索。
1、Bayesian Belief Propagation,Reading Group,Overview,Problem Background Bayesian Modelling Markov Random FieldsExamine use of Bayesian Belief Propagation (BBP) in three low level vision applications. Contour Motion Estimation Dense Depth Estimation Unwrapping Phase Images Convergence Issues Conclusion
2、s,Problem Background,A problem of probabilistic inference Estimate unknown variables given observed data. For low level vision: Estimate unknown scene properties (e.g. depth) from image properties (e.g. Intensity gradients),Bayesian models in low level vision,A statistical description of an estimati
3、on problem. Given data d, we want to estimate unknown parameters uTwo components Prior Model p(u) Captures know information about unknown data and is independent of observed data. Distribution of probable solutions. Sensor Model p(d|u) Describes relationship between sensed measurements d and unknown
4、 hidden data u. Combine using Bayes Rule to give the posterior,Markov Random Fields,ui,Pairwise Markov Random Field: Model commonly used to represent images,Contour Motion Estimation,Yair Weiss,Contour Motion Estimation,Estimate the motion of contour using only local information. Less computationall
5、y intensive method than optical flow. Application example: object tracking. Difficult due to the aperture problem.,Contour Motion Estimation,Aperture Problem,Ideal,Actual,Prior Model: ui+1 = ui + nwhere n N(0,sp),Contour Motion Estimation,Brightness Constant Constraint Equation,where Ii = I(xi,yi,t)
6、,1D Belief Propagation,Iterate until message values converge,Results,Contour motion estimation WeissFaster and more accurate solutions over pre-existing methods such as relaxation. Results after iteration n are optimal given all data within distance of n nodes. Due to the nature of the problem, all
7、velocity components should and do converge to the same value.Interesting to try algorithm on problems where this is not the case Multiple motions within the same contour Rotating contours (requires a new prior model) Only one dimensional problems tackled but extensions to 2D are discussed. Also use
8、of algorithm to solve Direction Of Figure (DOF) problem using convexity (not discussed),Dense Depth Estimation,Richard Szeliski,Depth Estimation,Assume smooth variation in disparity,Define prior using Gibbs Distribution:,Ep(u) is an energy functional:,Depth Estimation,Image T=0,Image T=1,Image T=t,I
9、mage T=t+1,Image T=t+2,Image t=t+3,di,Disparity:,related to correlation metric,i,Where H is a measurement matrix and,Es(u) is an energy functional:,Depth Estimation,E(u) is the overall energy:,Energy function E(u) minimized when u=A-1b,Posterior:,Matrix A-1 is large and expensive to compute,Gauss-Se
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- BAYESIANBELIEFPROPAGATIONPPT
