欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Bayesian Belief Propagation.ppt

    • 资源ID:378867       资源大小:610KB        全文页数:25页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Bayesian Belief Propagation.ppt

    1、Bayesian Belief Propagation,Reading Group,Overview,Problem Background Bayesian Modelling Markov Random FieldsExamine use of Bayesian Belief Propagation (BBP) in three low level vision applications. Contour Motion Estimation Dense Depth Estimation Unwrapping Phase Images Convergence Issues Conclusion

    2、s,Problem Background,A problem of probabilistic inference Estimate unknown variables given observed data. For low level vision: Estimate unknown scene properties (e.g. depth) from image properties (e.g. Intensity gradients),Bayesian models in low level vision,A statistical description of an estimati

    3、on problem. Given data d, we want to estimate unknown parameters uTwo components Prior Model p(u) Captures know information about unknown data and is independent of observed data. Distribution of probable solutions. Sensor Model p(d|u) Describes relationship between sensed measurements d and unknown

    4、 hidden data u. Combine using Bayes Rule to give the posterior,Markov Random Fields,ui,Pairwise Markov Random Field: Model commonly used to represent images,Contour Motion Estimation,Yair Weiss,Contour Motion Estimation,Estimate the motion of contour using only local information. Less computationall

    5、y intensive method than optical flow. Application example: object tracking. Difficult due to the aperture problem.,Contour Motion Estimation,Aperture Problem,Ideal,Actual,Prior Model: ui+1 = ui + nwhere n N(0,sp),Contour Motion Estimation,Brightness Constant Constraint Equation,where Ii = I(xi,yi,t)

    6、,1D Belief Propagation,Iterate until message values converge,Results,Contour motion estimation WeissFaster and more accurate solutions over pre-existing methods such as relaxation. Results after iteration n are optimal given all data within distance of n nodes. Due to the nature of the problem, all

    7、velocity components should and do converge to the same value.Interesting to try algorithm on problems where this is not the case Multiple motions within the same contour Rotating contours (requires a new prior model) Only one dimensional problems tackled but extensions to 2D are discussed. Also use

    8、of algorithm to solve Direction Of Figure (DOF) problem using convexity (not discussed),Dense Depth Estimation,Richard Szeliski,Depth Estimation,Assume smooth variation in disparity,Define prior using Gibbs Distribution:,Ep(u) is an energy functional:,Depth Estimation,Image T=0,Image T=1,Image T=t,I

    9、mage T=t+1,Image T=t+2,Image t=t+3,di,Disparity:,related to correlation metric,i,Where H is a measurement matrix and,Es(u) is an energy functional:,Depth Estimation,E(u) is the overall energy:,Energy function E(u) minimized when u=A-1b,Posterior:,Matrix A-1 is large and expensive to compute,Gauss-Se

    10、idel Relaxation,Minimize energy locally for each node ui keeping all other nodes fixed. Leads to update rule:This is also the estimated mean of the marginal probability distribution p(ui|d) given by Gibbs Sampling. For the 1-D example given by Weiss:,Results,Dense depth estimation Szeliski Dense (pe

    11、r pixel) depth estimation from a sequence of images with known camera motion. Adapted Kalman Filter: estimates of depth from time t-1 are used to improve estimates at time t. Uses multi-resolution technique (image pyramid) to improve convergence times. Uses Gibbs Sampling to sample the posterior. St

    12、ochastic Gauss-Seidel relaxation Not guaranteed to converge. Problem can be reformulated to use message passing. Does not account for loops in the network, only recently has belief propagation in networks with loops been fully understood Yedidia et al,Unwrapping Phase Images,Brendan Frey et al,Unwra

    13、pping Phase Images,Wrapped phase images are produced by devices such as MRI and radar. Unwrapping involves finding shift values between each point. Unwrapping is simple in one dimension One path through data Use local gradient to estimate shift. For 2D images, the problem is more difficult (NP-hard)

    14、 Many paths through the data Shifts along all paths must be consistent,Zero-Curl Constraint,Sensor Data,Estimating relative shift (variables a and b) values -1,0 or 1 between each data point. Use local image gradient as sensor input,Sensor nodes:,Hidden shift nodes:,Gaussian sensor model:,Belief Pro

    15、pagation,m4,m5,m5,Results,Unwrapping phase images Frey et al. Initialize message to uniform distribution and iterate to convergence. Estimates a solution to an NP-Hard problem in O(n) time in the number of the nodes. Reduction in reconstruction error over relaxation methods. Does not account for loo

    16、ps in the network, messages could cycle leading to incorrect belief estimates. Not guaranteed to converge.,Convergence only guaranteed when network is a tree structure and all data is available. In networks with loops, messages can cycle resulting in incorrect belief estimates.Multi-resolution metho

    17、ds such as image pyramids can be used to speed up convergence times (and improve results).,Convergence,Conclusion,BBP used to infer marginal posterior distribution of hidden information from observable data. Efficient message passing system is linear in the number of nodes as opposed to exponential.

    18、 Propagate local information globally to achieve more reliable estimates. Useful for low level vision applications Contour Motion Estimation Weiss Dense Depth Estimation Szeliski Unwrapping Phase Images Frey et al Improved results over standard relaxation algorithms. Can be used in conjunction with multi-resolution framework to improve convergence times. Need to account for loops to prevent cycling of messages Yedidia et al.,


    注意事项

    本文(Bayesian Belief Propagation.ppt)为本站会员(medalangle361)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开