Analysis of Security Protocols (III).ppt
《Analysis of Security Protocols (III).ppt》由会员分享,可在线阅读,更多相关《Analysis of Security Protocols (III).ppt(33页珍藏版)》请在麦多课文档分享上搜索。
1、Analysis of Security Protocols (III),John C. Mitchell Stanford University,Analyzing Security Protocols,Non-formal approaches (can be useful, but no tools) Some crypto-based proofs Bellare, RogawayBAN and related logics Axiomatic semantics of protocol stepsMethods based on operational semantics Intru
2、der model derived from Dolev-Yao Protocol gives rise to set of traces Perfect encryption Possible to include known algebraic properties,Example projects and tools,Prove protocol correct Paulsons “Inductive method”, others in HOL, PVS, etc. Bolignano - Abstraction methods MITRE - Strand spaces Proces
3、s calculus approach: Abadi-Gordon spi-calculus Search using symbolic representation of states Meadows: NRL Analyzer, Millen: Interrogator Exhaustive finite-state analysis FDR, based on CSP Lowe, Roscoe, Schneider, Mur - specialized input language Clarke et al. - state search with axiomatic intruder
4、model,Explicit Intruder Method,Intruder Model,Analysis Tool,Formal Protocol,Informal Protocol Description,Gee whiz. Looks OK to me.,A notation for inf-state systems,Define protocol, intruder in minimal framework Disadvantage: need to introduce new notation,Protocol Notation,Non-deterministic infinit
5、e-state systems FactsF := P(t1, , tn)t := x | c | f(t1, , tn) States F1, , Fn Multiset of facts Includes network messages, private state Intruder will see messages, not private state,Multi-sorted first-order atomic formulas,State Transitions,TransitionF1, , Fk x1 xm. G1, , Gn What this means If F1,
6、, Fk in state , then a next state has Facts F1, , Fk removed G1, , Gn added, with x1 xm replaced by new symbols Other facts in state carry over to Free variables in rule universally quantified Pattern matching in F1, , Fk can invert functions,Finite-State Example,Predicates: State, Input Function: C
7、onstants: q0, q1, q2, q3, a, b, nil Transitions: State(q0), Input(a x) State(q1), Input(x) State(q0), Input(b x) State(q2), Input(x).,q0,q1,q3,q2,b,a,a,a,b,b,b,a,b,Existential Quantification,Natural-deduction proof ruley/x( elim) x. Summary: for proof from x., choose new symbol and proceed from y/x,
8、y not free in any other hypothesis,Infinite-State Example,Predicates: State, Input, Color Function: Constants: q0, a, b, nil, red, blue Transitions: State(q), Input(a x), Color(q,red) q. State(q), Input(x), Color(q,blue), Color(q,red) .,Input a: change color Input b: same color,Need to preserve fact
9、s explicitly,Turing Machine,Predicates Current(state,cell) - current state, tape pos. Contents(cell, symbol) - contents of tape cell Adjacent(cell, cell) - keep cells in order Constants q0, q1, q2, - finite set of states c0, ceot - initial tape cells “0”, “1”, “b” - tape symbols,Turing Machine (II),
10、Transitions Adjacent(c0, ceot) Adjacent(c, ceot) c. Adjacent(c,c), Adjacent(c,ceot)Current(qi,c), Contents(c,“0”), Adjacent(c,c) Current(qk,c), Contents(c,“1”), Adjacent(c,c)Current(qi,c), Contents(c,“1”), Adjacent(c,c) Current(qk,c),Contents(c,“0”), Adjacent(c,c),infinite linear tape,sample move ri
11、ght,sample move left,.,c,eot,c,.,c,eot,Simplified Needham-Schroeder,Predicates Ai, Bi, Ni - Alice, Bob, Network in state i Transitions x. A1(x) A1(x) N1(x), A2(x) N1(x) y. B1(x,y) B1(x,y) N2(x,y), B2(x,y) A2(x), N2(x,y) A3(x,y) A3(x,y) N3(y), A4(x,y) B2(x,y), N3(y) B3(x,y)picture next slide,A B: na,
12、 AKb B A: na, nbKa A B: nbKbAuthentication A4(x,y) B3(x,y) y=y,Sample Trace,A2(na),A1(na),A2(na),A2(na),A3(na, nb),A4(na, nb),A4(na, nb),B2(na, nb),B1(na, nb),B2(na, nb),B3(na, nb),B2(na, nb),N1(na),N2(na, nb),N3( nb),x. A1(x) A1(x) A2(x), N1(x) N1(x) y. B1(x,y) B1(x,y) N2(x,y), B2(x,y) A2(x), N2(x,
13、y) A3(x,y) A3(x,y) N3(y), A4(x,y) B2(x,y), N3(y) B3(x,y),Common Intruder Model,Derived from Dolev-Yao model 1989 Adversary is nondeterministic process Adversary can Block network traffic Read any message, decompose into parts Decrypt if key is known to adversary Insert new message from data it has o
14、bserved Adversary cannot Gain partial knowledge Guess part of a key Perform statistical tests, ,Formalize Intruder Model,Intercept and remember messagesN1(x) M(x) N2(x,y) M(x), M(y) N3(x) M(x) Send messages from “known” dataM(x) N1(x), M(x) M(x), M(y) N2(x,y), M(x), M(y) M(x) N3(x), M(x) Generate ne
15、w data as neededx. M(x)Highly nondeterministic, same for any protocol,Attack on Simplified Protocol,A2(na),A1(na),A2(na),A2(na),B1(na, nb),N1(na),x. A1(x) A1(x) A2(x), N1(x) N1(x) M(x) x. M(x) M(x) N1(x), M(x) N1(x) y. B1(x,y),M(na),M(na), M(na),N1(na),A2(na),M(na), M(na),A2(na),M(na), M(na),Continu
16、e “man-in-the-middle” to violate specification,Modeling Perfect Encryption,Encryption functions and keys For public-key encryption two key sorts: e_key, d_key predicate Key_pair(e_key, d_key) Functions enc : e_key msg - msgdec : d_key msg - msg (implicit in pattern-matching) Properties of this model
17、 Encrypt, decrypt only with appropriate keys Only produce enc(key, msg) from key and msg (!) This is not true for some encryption functions,Steps in public-key protocol,Bob generates key pair and publishes e_key u. d_key v. Bob1(u,v) Bob1(u,v) NAnnounce(u), Bob2(u,v) Alice sends encrypted message to
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANALYSISOFSECURITYPROTOCOLSIIIPPT
