欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Analysis of Security Protocols (III).ppt

    • 资源ID:378359       资源大小:172.50KB        全文页数:33页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Analysis of Security Protocols (III).ppt

    1、Analysis of Security Protocols (III),John C. Mitchell Stanford University,Analyzing Security Protocols,Non-formal approaches (can be useful, but no tools) Some crypto-based proofs Bellare, RogawayBAN and related logics Axiomatic semantics of protocol stepsMethods based on operational semantics Intru

    2、der model derived from Dolev-Yao Protocol gives rise to set of traces Perfect encryption Possible to include known algebraic properties,Example projects and tools,Prove protocol correct Paulsons “Inductive method”, others in HOL, PVS, etc. Bolignano - Abstraction methods MITRE - Strand spaces Proces

    3、s calculus approach: Abadi-Gordon spi-calculus Search using symbolic representation of states Meadows: NRL Analyzer, Millen: Interrogator Exhaustive finite-state analysis FDR, based on CSP Lowe, Roscoe, Schneider, Mur - specialized input language Clarke et al. - state search with axiomatic intruder

    4、model,Explicit Intruder Method,Intruder Model,Analysis Tool,Formal Protocol,Informal Protocol Description,Gee whiz. Looks OK to me.,A notation for inf-state systems,Define protocol, intruder in minimal framework Disadvantage: need to introduce new notation,Protocol Notation,Non-deterministic infinit

    5、e-state systems FactsF := P(t1, , tn)t := x | c | f(t1, , tn) States F1, , Fn Multiset of facts Includes network messages, private state Intruder will see messages, not private state,Multi-sorted first-order atomic formulas,State Transitions,TransitionF1, , Fk x1 xm. G1, , Gn What this means If F1,

    6、, Fk in state , then a next state has Facts F1, , Fk removed G1, , Gn added, with x1 xm replaced by new symbols Other facts in state carry over to Free variables in rule universally quantified Pattern matching in F1, , Fk can invert functions,Finite-State Example,Predicates: State, Input Function: C

    7、onstants: q0, q1, q2, q3, a, b, nil Transitions: State(q0), Input(a x) State(q1), Input(x) State(q0), Input(b x) State(q2), Input(x).,q0,q1,q3,q2,b,a,a,a,b,b,b,a,b,Existential Quantification,Natural-deduction proof ruley/x( elim) x. Summary: for proof from x., choose new symbol and proceed from y/x,

    8、y not free in any other hypothesis,Infinite-State Example,Predicates: State, Input, Color Function: Constants: q0, a, b, nil, red, blue Transitions: State(q), Input(a x), Color(q,red) q. State(q), Input(x), Color(q,blue), Color(q,red) .,Input a: change color Input b: same color,Need to preserve fact

    9、s explicitly,Turing Machine,Predicates Current(state,cell) - current state, tape pos. Contents(cell, symbol) - contents of tape cell Adjacent(cell, cell) - keep cells in order Constants q0, q1, q2, - finite set of states c0, ceot - initial tape cells “0”, “1”, “b” - tape symbols,Turing Machine (II),

    10、Transitions Adjacent(c0, ceot) Adjacent(c, ceot) c. Adjacent(c,c), Adjacent(c,ceot)Current(qi,c), Contents(c,“0”), Adjacent(c,c) Current(qk,c), Contents(c,“1”), Adjacent(c,c)Current(qi,c), Contents(c,“1”), Adjacent(c,c) Current(qk,c),Contents(c,“0”), Adjacent(c,c),infinite linear tape,sample move ri

    11、ght,sample move left,.,c,eot,c,.,c,eot,Simplified Needham-Schroeder,Predicates Ai, Bi, Ni - Alice, Bob, Network in state i Transitions x. A1(x) A1(x) N1(x), A2(x) N1(x) y. B1(x,y) B1(x,y) N2(x,y), B2(x,y) A2(x), N2(x,y) A3(x,y) A3(x,y) N3(y), A4(x,y) B2(x,y), N3(y) B3(x,y)picture next slide,A B: na,

    12、 AKb B A: na, nbKa A B: nbKbAuthentication A4(x,y) B3(x,y) y=y,Sample Trace,A2(na),A1(na),A2(na),A2(na),A3(na, nb),A4(na, nb),A4(na, nb),B2(na, nb),B1(na, nb),B2(na, nb),B3(na, nb),B2(na, nb),N1(na),N2(na, nb),N3( nb),x. A1(x) A1(x) A2(x), N1(x) N1(x) y. B1(x,y) B1(x,y) N2(x,y), B2(x,y) A2(x), N2(x,

    13、y) A3(x,y) A3(x,y) N3(y), A4(x,y) B2(x,y), N3(y) B3(x,y),Common Intruder Model,Derived from Dolev-Yao model 1989 Adversary is nondeterministic process Adversary can Block network traffic Read any message, decompose into parts Decrypt if key is known to adversary Insert new message from data it has o

    14、bserved Adversary cannot Gain partial knowledge Guess part of a key Perform statistical tests, ,Formalize Intruder Model,Intercept and remember messagesN1(x) M(x) N2(x,y) M(x), M(y) N3(x) M(x) Send messages from “known” dataM(x) N1(x), M(x) M(x), M(y) N2(x,y), M(x), M(y) M(x) N3(x), M(x) Generate ne

    15、w data as neededx. M(x)Highly nondeterministic, same for any protocol,Attack on Simplified Protocol,A2(na),A1(na),A2(na),A2(na),B1(na, nb),N1(na),x. A1(x) A1(x) A2(x), N1(x) N1(x) M(x) x. M(x) M(x) N1(x), M(x) N1(x) y. B1(x,y),M(na),M(na), M(na),N1(na),A2(na),M(na), M(na),A2(na),M(na), M(na),Continu

    16、e “man-in-the-middle” to violate specification,Modeling Perfect Encryption,Encryption functions and keys For public-key encryption two key sorts: e_key, d_key predicate Key_pair(e_key, d_key) Functions enc : e_key msg - msgdec : d_key msg - msg (implicit in pattern-matching) Properties of this model

    17、 Encrypt, decrypt only with appropriate keys Only produce enc(key, msg) from key and msg (!) This is not true for some encryption functions,Steps in public-key protocol,Bob generates key pair and publishes e_key u. d_key v. Bob1(u,v) Bob1(u,v) NAnnounce(u), Bob2(u,v) Alice sends encrypted message to

    18、 Bob Alice1(e,d,x), NAnnounce(e) Alice2(e,d,x,e) Alice2(e,d,x,e) N1(enc(e,x,e), Alice3(u,v,x,w) Bob decrypts Bob1(u,v), N1(enc(u, x,y) z. Bob1(u,v,x,y,z),Intruder Encryption Capabilities,Intruder can encrypt with encryption key Me(k), Mdata(x) Ni(enc(k,x), Me(k), Mdata(x) Intruder can decrypt with d

    19、ecryption key Nj(enc(k,x),Key_pair(k,k), Md(k), Mdata(x), . Add to previous intruder modelAssumes sorts data, e_key, d_key with typedpredicates Mdata(data), Me(e_key), Md(d_key),Intruder: power and limitations,Can find some attacks Needham-Schroeder by exhaustive search Other attacks are outside mod

    20、el Interaction between protocol and encryption Some protocols cannot be modeled Probabilistic protocols Steps that require specific property of encryption Possible to prove erroneous protocol correct Requires property that crypto does not provide,Optimize Protocol + Intruder,Adversary receives all m

    21、essages; no net Replace Alicei(x,y) Nj(x), Alicek(x,y) Nj(x) M(x) M(z) Nj(z), M(z) Nj(x), Bobi(w) Bobj(w,y) By Alicei(x,y) M(x), Alicek(x,y) M(z), Bobi(w) Bobj(w,y),Alices message can go to Bob or M. M can replay or send different msg,All messages go directly to M. M can forward or send different ms

    22、g,Additional Optimizations,Intruder can simulate honest participants If additional independent sessions are useful for attack, then intruder can simulate these sessions Therefore - suffices to consider single initiator, single responder, and intruder (for this protocol). For decidability, bound on i

    23、ntruder Lowe Suffices to bound the number of new nonces Analyze .,Analysis of Protocol+Intruder,Prove properties of protocols Unbounded # of participants, message space Prove that system satisfies specification Paulson, etc: prove invariant holds at all reachable states Spi-calculus: prove protocol

    24、equivalent ideal protocol Symbolic search with pruning Search backward from error Prune search by proving forward invariants Exhaustive finite-state methods Approximate infinite-state system by finite one Search all states, perhaps with optimizations,Example description languages,First- or Higher-or

    25、der Logic Define set of traces, prove protocol correct Horn-clause Logic x (A1A2 B) Symbolic search methods Process calculus FDR model checker based on CSP Spi-calculus proof methods based on pi-calculus Additional formalisms CAPSL protocol description language Millen Mur language for finite-state s

    26、ystems,Paulsons Inductive Method,Define set TR of traces of protocol+intruder Similar to traces in unifying formalism Transition F1, , Fk x1 xm. G1, , Gn gives one way of extending trace Auxiliary functions mapping traces to sets Analz(trace) = data visible to intruder Synth(trace) = messages intrud

    27、er can synthesize Definitions and proofs use induction Similar inductive arguments for many protocols,Symbolic Search Methods,Examples: NRL Protocol Analyzer, Interrogator Main idea Write protocol as set of Horn clauses Transition F1, , Fk x1 xm. G1, , Gn can be Skolemized and translated to Prolog c

    28、lauses Search back from possible error for contradiction This is usual Prolog refutation procedure Important pruning technique Prove invariants by forward reasoning Use these to avoid searching unreachable states,Process Calculus Description,Protocol defined by set of processes Each process gives on

    29、e step of one principal Can derive by translation from unifying notation F1, , Fk x1 xm. G1, , Gn is one process Replace predicates by port names Replace pattern-matching by explicit destructuring In pi-calculus, use in place of Example B1(x,y) N2(x,y), B2(x,y) b1(p). let x=fst(p) and y=snd(p) in n2

    30、x,y| b2 x,y end,Spi-Calculus AG97, .,Write protocol in process calculus Express security using observ. equivalence Standard relation from programming language theoryP Q iff for all contexts C , same observations about CP and CQ Context (environment) represents adversary Use proof rules for to prove

    31、security Protocol is secure if no adversary can distinguish it from an idealized version of the protocol,Finite-state methods,Two sources of infinite behavior Many instances of participants, multiple runs Message space or data space may be infinite Finite approximation Transitions: F1, , Fk x1 xm. G

    32、1, , Gn choose fixed number of Skolem constants Terms: restrict repeated functions f(f(f(f(x) Can express finite-state protocol + intruder in CSP : FDR-based model checking projects Other notations: Mur project, Clarke et al., .,Security Protocols in Mur,Standard “benchmark” protocols Needham-Schroe

    33、der, TMN, Kerberos Study of Secure Sockets Layer (SSL) Versions 2.0 and 3.0 of handshake protocol Include protocol resumption Discovered all known or suspected attacks Recent work on tool optimizationShmatikov, Stern, .,Malleability Dolev,Dwork,Naor,Idealized assumption If intruder produces Network(

    34、enc(k,x) then either Network(enc(k,x) M (enc(k,x) (replay) M(k), M(x) M (enc(k,x) (knows parts) Not true for RSA encrypt(k,msg) = msgk mod N property encr(x*y) = encr(x) * encr(y) Model Network(enc(k,x) M () . Network (enc(k,c*x) Can send encrypted message without “knowing” messageFinite state ?,Aut

    35、hentication and Secrecy for Handshake Protocols,How many protocols are there to verify? Average length 7 steps Data fields per message 5 fields Distinct ways to fill a field 50 entries Number of possible combinations 1750 protocols Research directions Get the monkeys and typewriters going Easier description and specification, faster tools Improved analysis of timestamps, . Interaction between protocol and crypto primitives,


    注意事项

    本文(Analysis of Security Protocols (III).ppt)为本站会员(wealthynice100)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开