2013届浙江省新梦想新教育新阵地联谊学校高三回头考联考理科数学试卷与答案(带解析).doc
《2013届浙江省新梦想新教育新阵地联谊学校高三回头考联考理科数学试卷与答案(带解析).doc》由会员分享,可在线阅读,更多相关《2013届浙江省新梦想新教育新阵地联谊学校高三回头考联考理科数学试卷与答案(带解析).doc(17页珍藏版)》请在麦多课文档分享上搜索。
1、2013届浙江省新梦想新教育新阵地联谊学校高三回头考联考理科数学试卷与答案(带解析) 选择题 设集合 A , B ,则 ( ) A B C( 3, 4) D( 1, 2) 答案: B 试题分析:根据一元二次不等式的解法可知,集合 A , B= ,故可知 ,因此可知 ,故选 B. 考点:补集,交集 点评:考查了集合的基本运算,属于基础题,只要细心点,一般容易得分。 棱长为 2 的正方体 在空间直角坐标系中移动,但保持点 A、B分别在 x轴、 y轴上移动,则点 到原点 O 的最远距离为( ) A B C 5 D 4 答案: D 试题分析:根据题意,由于棱长为 2的正方体 在空间直角坐标系中移动,但
2、保持点 A、 B分别在 x轴、 y轴上移动,则可知设 A(X,0)b(0,y),可知 ,那么可以设 ,那么可知借助于三角函数的性质可知CO的最大值为 ,那么可知点 到原点 O 的最远距离为 4,选 D. 考点:展开图,正方体 点评:求解空间一点到坐标原点的距离的最值问题,转化为求点在平面内的射影到原点的距离的最大值即可,属于中档题,考查分析问题的能力。 如图所示是某个区域的街道示意图(每个小矩形的边表示街道),那么从A到 B的最短线路有( )条 A 100 B 400 C 200 D 250 答案: C 试题分析:根据题意,由于从 A到 B,那么一共至少走 10步,其中 5步为水平步,那么可知
3、其余的为垂直步,因此可知所有的最短路线的走法 ,故选C 考点:排列组合 点评:理解从 A 到 B 的最短线路,必然要经过 10 步完成,有水平步和垂直步,那么确定了水平走了那几步即可,基础题。 若关于 的不等式 在区间 上有解,则实数 的取值范围为( ) A B C (1,+) D答案: A 试题分析:根据题意,由于关于 的不等式 在区间 上有解,则可知 ,由于函数 y= 在定义域内是增函数,故可知有解的话只要 a大于函数的最小值即可,即 ,故可知 a的范围是 ,故选 A. 考点:不等式 点评:对于一元二次不等式的给定区间上有解问题,可以分离参数法得到,这是一种常用的转化角度,基础题。 平行四
4、边形 ABCD中 AC 交 BD于 O, AC=5, BD=4,则( ) A 41 B C 9 D 答案: C 试题分析:因为在已知条件下,平行四边形 ABCD中 AC 交 BD于 O, AC=5,BD=4,那么由 ,同时可知 故选 C. 考点:向量的数量积 点评:结合该试题的关键里将所求解的未知化为已知,来求解运算得到结论,属于基础题。 已知 F1和 F2分别是双曲线 的左、右焦点, P是双曲线左支的一点, , ,则该双曲线的离心率为( ) A B C D 答案: C 试题分析:根据题意,结合双曲线的定义可知 分别是双曲线 的左、右焦点, P是双曲线左支的一点, , , 根据定义可知 ,故选
5、 C. 考点:双曲线方程,双曲线的性质 点评:解决该试题的关键是利用已知的垂直关系得到 a,b,c的关系式进而得到离心率,属于基础题。 设函数 与函数 的对称轴完全相同,则 的值为( ) A B C D 答案: B 试题分析:分别求出两个函数的对称轴,利用对称轴完全相同,即可求得 的值 由题意,求函数 g(x)=cos(2x+ )(| | )的对称轴,令 2x+ =k, x=( k Z) 函数 f(x)=2sin(x+ )( 0),令 x+ =m+ , x= ( m Z) 函数 f(x)=2sin(x+ )( 0)与函数 g(x)=cos(2x+ )(| | )的对称轴完全相同, =2, =-
6、 ,故选 B 考点:三角函数 点评:本题考查三角函数的性质,考查学生的计算能力,属于中档题 已知 为等差数列, , ,则 ( ) A B C D 答案: B 试题分析:根据题意可知,由于 为等差数列, , ,那么可知 为等差数列, ,则可以将 看作一元二次方程的两个根,结合已知的条件可知 考点:等差数列 ,因此可知当 d=-4或者 d=4时,可知对应的结论为 -323,故选 B. 点评:考查了等差数列的通项公式的运用,属于常规试题,解决出基本量即可。 若 ,则 是 “ ”的( ) A充分非必要条件 B必要非充分条件 C充分且必要条件 D既非充分也非必要条件 答案: A 试题分析:根据题意,由于
7、 ,可知该式大于等于零,则 不能推出结论,反之成立,因此 是“ 的充分非必要条件,故选 A. 考点:充分条件 点评:理解充分条件的概念,主要是看条件是否可以推出结论,然后结合集合的包含关系来确定结论。属于基础题。 集合 | (其中 i是虚数单位)中元素的个数是( ) A 1 B 2 C 4 D无穷多个 答案: C 试题分析:因为由题意可知,那么可知虚数单位的幂运算是有周期性的,且周期为 4,那么可知元素个数为 4,选 C. 考点:复数的概念 点评:对于复数中的运算,主要是涉及了概念的理解,和虚数单位的计算运用,属于基础题。 填空题 若函数 的定义域用 D表示,则使对 D均成立的实数 的范围是
8、_ 答案: 试题分析:因为函数 的定义域用 D表示,即可知为使 对 D 均成立,则满足 0,那么可知为分子和分母同号,根据二次函数的性质可知,只有判别式都小于零时满足题意,可知参数 的范围是 ,解得为 。 考点:函数定义域 点评:函数与不等式的求解,主要是结合函数的性质来分析得到,有创新性。 过抛物线 的焦点作一条倾斜角为 ,长度不超过 8的弦,弦所在的直线与圆 有公共点,则 的取值范围是 答案: 试题分析:根据题意,由于过抛物线 的焦点( 1, 0),倾斜角为 ,则可知直线方程为 y=tan (x-1),那么利用线与圆的位置关系,由于长度不超过 8的弦,可知弦所在的直线与圆 有公共点,则圆心
9、到直线的距离为同时根据过焦点的弦长为 ,因此可知角 的取值范围是 . 考点:抛物线 点评:研究直线与圆有无公共点,主要是看圆心到直线的距离与圆的半径关系,结合抛物线定义求解,基础题。 已知 M, N 为平面区域 内的两个动 点,向量 ,则的最大值是 _ 答案: 试题分析:根据题意,由于 M, N 为平面区域 内的两个动点,则不等式组表示的为三角形区域,那么根据向量的数量积,由于 ,的最大值,即为当 MN 所在直线平行于 所在直线且方向相同的时候,且 MN 的长度为直线 3x-y-6=0与 x-y+2=0的交点早点( 0, -6)的距离可知为,故可知答案:为 40。 考点:线性规划 点评:解决的
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 浙江省 梦想 教育 阵地 联谊 学校 回头 联考 理科 数学试卷 答案 解析
