2019年高考数学二轮复习专题二函数与导数2.4.1导数与函数的单调性、极值、最值课件文.ppt
《2019年高考数学二轮复习专题二函数与导数2.4.1导数与函数的单调性、极值、最值课件文.ppt》由会员分享,可在线阅读,更多相关《2019年高考数学二轮复习专题二函数与导数2.4.1导数与函数的单调性、极值、最值课件文.ppt(42页珍藏版)》请在麦多课文档分享上搜索。
1、2.4.1 导数与函数的单调性、极值、最值,-2-,解题策略一,解题策略二,讨论、判断、证明单调性或求单调区间 解题策略一 分类讨论法 例1已知函数f(x)=ex(ex-a)-a2x. (1)讨论f(x)的单调性; (2)若f(x)0,求a的取值范围. 难点突破 (1)讨论f(x)的单调性求函数的定义域求导函数判断导函数的符号确定单调区间;(2)讨论a的取值范围求f(x)导函数确定f(x)的单调区间求f(x)取最小值解不等式f(x)max0得a的范围合并a的范围.,-3-,解题策略一,解题策略二,解 (1)函数f(x)的定义域为(-,+),f(x)=2e2x-aex-a2=(2ex+a)(ex
2、-a). 若a=0,则f(x)=e2x,在(-,+)单调递增. 若a0,则由f(x)=0得x=ln a. 当x(-,ln a)时,f(x)0.故f(x)在(-,ln a)单调递减,在(ln a,+)单调递增.,-4-,解题策略一,解题策略二,解题心得利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含参数时,需依据参数取值对不等式解集的影响进行分类讨论.,-5-,解题策略一,解题策略二,对点训练1(2018山东济南一模)设函数f(x)= ,aR. (1)讨论f(x)的单调性; (2)当a0时,记f(x)的最小值为g(a),证明g(a)1.,(1)解 f(x)的定义域为(0,+),
3、当a0时,f(x)0,f(x)在(0,+)上单调递增; 当a0时,当x(0,a),f(x)0,f(x)单调递增; 综上,当a0时,f(x)在(0,+)上单调递增; 当a0时,f(x)在(0,a)上单调递减,在(a,+)上单调递增.,-6-,解题策略一,解题策略二,-7-,解题策略一,解题策略二,解题策略二 构造函数法 例2已知函数 (k为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1)处的切线与x轴平行. (1)求k的值; (2)求f(x)的单调区间.,-8-,解题策略一,解题策略二,即h(x)在(0,+)上是减函数. 由h(1)=0知,当00,从而f(x)0; 当x1时,h(x
4、)0,从而f(x)0. 综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+).,解题心得通过导数研究单调性首先要判断构造函数的导函数的正负,因此,构造函数的关键在于其导函数的零点是否易求或易估.,-9-,解题策略一,解题策略二,对点训练2设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2)处的切线方程为y=(e-1)x+4. (1)求a,b的值; (2)求f(x)的单调区间.,-10-,解题策略一,解题策略二,(2)由(1)知f(x)=xe2-x+ex. 由f(x)=e2-x(1-x+ex-1)及e2-x0知,f(x)与1-x+ex-1同号. 令g(x)=1-
5、x+ex-1, 则g(x)=-1+ex-1. 所以,当x(-,1)时,g(x)0,g(x)在区间(1,+)上单调递增. 故g(1)=1是g(x)在区间(-,+)上的最小值, 从而g(x)0,x(-,+). 综上可知,f(x)0,x(-,+). 故f(x)的单调递增区间为(-,+).,-11-,解题策略一,解题策略二,解题策略三,求函数的极值、最值 解题策略一 利用单调性求 例3已知函数f(x)=ln x- ,g(x)=ax+b. (1)若a=2,F(x)=f(x)-g(x),求F(x)的单调区间; (2)若函数g(x)=ax+b是函数f(x)=ln x- 图象的切线,求a+b的最小值. 难点突
6、破 (1)求出F(x)的导数,解关于导函数的不等式,即得函数的单调区间;,-12-,解题策略一,解题策略二,解题策略三,当t(0,1)时,(t)0,(t)在(1,+)上单调递增. 即有t=1时,(t)取得极小值,也为最小值. 则a+b=(t)(1)=-1,故a+b的最小值为-1.,-13-,解题策略一,解题策略二,解题策略三,解题心得1.求最值的常用方法是由导数确定单调性,由单调性确定极值,比较极值与定义域的端点值确定最值; 2.对kf(x)恒成立,求参数k的最值问题,若求不出f(x)的极值点,可先求极值点所在区间,再由极值点范围求极值的范围,由此得出参数的最值.,-14-,解题策略一,解题策
7、略二,解题策略三,对点训练3已知函数f(x)=excos x-x. (1)求曲线y=f(x)在点(0,f(0)处的切线方程; (2)求函数f(x)在区间 上的最大值和最小值.,解 (1)因为f(x)=excos x-x,所以f(x)=ex(cos x-sin x)-1,f(0)=0. 又因为f(0)=1,所以曲线y=f(x)在点(0,f(0)处的切线方程为y=1. (2)设h(x)=ex(cos x-sin x)-1, 则h(x)=ex(cos x-sin x-sin x-cos x)=-2exsin x.,-15-,解题策略一,解题策略二,解题策略三,解题策略二 构造函数法,-16-,解题策
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 二轮 复习 专题 函数 导数 241 调性 极值 课件 PPT
