北京市各区2018届中考数学一模试卷精选汇编压轴题专题.doc
《北京市各区2018届中考数学一模试卷精选汇编压轴题专题.doc》由会员分享,可在线阅读,更多相关《北京市各区2018届中考数学一模试卷精选汇编压轴题专题.doc(21页珍藏版)》请在麦多课文档分享上搜索。
1、1压轴题专题东城区28给出如下定义:对于 O 的弦 MN 和 O 外一点 P( M, O, N 三点不共线,且 P, O 在直线 MN 的异侧) ,当 MPN MON=180时,则称点 P 是线段 MN 关于点 O的关联点图 1 是点 P 为线段 MN 关于点 O 的关联点的示意图.在平面直角坐标系 xOy 中, O 的半径为 1.(1)如图 2, 2,M,2,N.在 A( 1,0) , B(1,1) , 2,0C三点中, 是线段 MN 关于点 O 的关联点的是 ;(2)如图 3, M(0,1) , N31,2,点 D 是线段 MN 关于点 O 的关联点. MDN 的大小为 ;在第一象限内有一
2、点 E3,m,点 E 是线段 MN 关于点 O 的关联点,判断 MNE 的形状,并直接写出点 E 的坐标; 点 F 在直线 23yx上,当 MFN MDN 时,求点 F 的横坐标 Fx的取值范围228. 解:(1) C; -2 分(2) 60; MNE 是等边三角形,点 E 的坐标为 31, ;-5 分 直线 32yx交 y 轴于点 K(0,2) ,交 x 轴于点 23T, 0. OK, T. 60.作 OG KT 于点 G,连接 MG. M, 1, OM=1. M 为 OK 中点 . MG =MK=OM=1. MGO = MOG=30, OG= 3. 3.2G, 10MON, 9.又 3G,
3、 , 0N. 6M. G 是线段 MN 关于点 O 的关联点.经验证,点 31E, 在直线 32yx上.结合图象可知, 当点 F 在线段 GE 上时 ,符合题意. GFEx , 32 .-8 分西城区28对于平面内的 C和 外一点 Q,给出如下定义:若过点 Q的直线与 C存在公共3点,记为点 A, B,设AQBkC,则称点 A(或点 B)是 C的“ k相关依附点” ,特别地,当点 和点 重合时,规定 ,2Qk(或 ) 已知在平面直角坐标系 xOy中, (1,0)Q, (,)C, 的半径为 r(1)如图,当 2r时,若 (0,)A是 C的“ k相关依附点 ”,则 k的值为_ 21,是否为 的 “
4、2相关依附点” 答:_(填“是”或“否” ) (2)若 上存在“ k相关依附点 ”点 M,当 r,直线 QM与 C相切时,求 k的值当 3k时,求 r的取值范围(3)若存在 的值使得直线 3yxb与 C有公共点,且公共点时 C的“ 3相关依附点” ,直接写出 b的取值范围图Cy xOQ图1Cy xOA1 A2Q【解析】 (1) 2是(2)如图,当 1r时,不妨设直线 QM与 C相切的切点 M在 x轴上方(切点 M在x轴下方时同理) ,连接 CM,则 Q,42QO xyCM (1,0), (,), 1r, 2CQ, M, 3,此时2kC,如图,若直线 QM与 C不相切,设直线 QM与 C的另一个
5、交点为 N(不妨设N,点 , 在 x轴下方时同理) ,作 CD于点 ,则 DN,N2QO xyCMD ()22MNNQDQ, 2CQ,k,当 3时, 3D,此时21CQ,5假设 C经过点 Q,此时 2r,点 早 外, r的取值范围是 1r (3) 3b海淀区28在平面直角坐标系 xOy中,对于点 P和 CA,给出如下定义:若 CA上存在一点T不与 重合,使点 P关于直线 T的对称点 在 上,则称 P为 的反射点下图为 CA的反射点 的示意图yxPOCTP(1)已知点 A的坐标为 (1,0), A的半径为 2,在点 (0,)O, 2M, 3N中, 的反射点是 _;点 P在直线 yx上,若 P为
6、的反射点,求点 P的横坐标的取值范围;(2) CA的圆心在 轴上,半径为 , y轴上存在点 是 CA的反射点,直接写出圆心的横坐标 的取值范围28解(1) A的反射点是 M, N 1 分设直线 yx与以原点为圆心,半径为 1 和 3 的两个圆的交点从左至右依次为 D, E,F, G,过点 D作 H轴于点 ,如图6可求得点 D的横坐标为 32同理可求得点 E, F, G的横坐标分别为 2, , 32点 P是 A的反射点,则 A上存在一点 T,使点 P关于直线 OT的对称点 P在 A上,则 O. 13 , 13 OP反之,若 , A上存在点 Q,使得 ,故线段 Q的垂直平分线经过原点,且与 A相交
7、因此点 是 的反射点点 P的横坐标 x的取值范围是 32 x,或 23 x4 分(2)圆心 C的横坐标 的取值范围是 4 7 分丰台区28对于平面直角坐标系 xOy 中的点 M 和图形 1W, 2给 出 如 下 定 义 : 点 P 为图形 1W上一点,点 Q 为图形 2W上一点,当点 M 是 线 段 PQ 的 中 点 时 , 称 点 M 是 图 形 1, 2的 “中 立 点 ” 如 果 点 P(x1, y1), Q(x2, y2),那么“中立点” M 的坐标为 ,21yx已知,点 A(-3,0), B(0,4), C(4,0)(1)连接 BC,在点 D( 2,0), E(0,1), F(0,
8、2)中,可以成为点 A 和线段 BC 的“中立点”的是_;(2)已知点 G(3,0), G 的半径为 2如果直线 y = - x + 1 上存在点 K 可以成为点 A和 G 的“中立点” ,求点 K 的坐标;(3)以点 C 为圆心,半径为 2 作圆点 N 为直线 y = 2x + 4 上的一点,如果存在点 N,使得 y轴上的一点可以成为点 N 与 C 的“中立点” ,直接写出点 N 的横坐标的取值范围75441123213 xOy68765432765432 65828 解:(1)点 A和线段 BC的“中立点”的是点 D,点 F; 2 分(2)点 A 和 G 的“中立点”在以点 O 为圆心、半
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京市 各区 2018 中考 数学 试卷 精选 汇编 压轴 专题 DOC
