ASTM D2140-2003 Standard Test Method for Carbon-Type Composition of Insulating Oils of Petroleum Origin《石油制绝缘油的碳类组分的标准试验方法》.pdf
《ASTM D2140-2003 Standard Test Method for Carbon-Type Composition of Insulating Oils of Petroleum Origin《石油制绝缘油的碳类组分的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D2140-2003 Standard Test Method for Carbon-Type Composition of Insulating Oils of Petroleum Origin《石油制绝缘油的碳类组分的标准试验方法》.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D 2140 03Standard Test Method forCarbon-Type Composition of Insulating Oils of PetroleumOrigin1This standard is issued under the fixed designation D 2140; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of las
2、t revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method may be used to determine the carbon-type composition of mineral insulating oils by correlation withbasi
3、c physical properties. For routine analytical purposes iteliminates the necessity for complex fractional separation andpurification procedures. The test method is applicable to oilshaving average molecular weights from 200 to above 600, and0 to 50 aromatic carbon atoms.1.2 Carbon-type composition is
4、 expressed as percentage ofaromatic carbons, percentage of naphthenic carbons, andpercentage of paraffinic carbons. These values can be obtainedfrom the correlation chart, Fig. 1, if both the viscosity-gravityconstant (VGC) and refractivity intercept (ri) of the oil areknown. Viscosity, density and
5、relative density (specific grav-ity), and refractive index are the only experimental datarequired for use of this test method.1.3 This test method is useful for determining the carbon-type composition of electrical insulating oils of the typescommonly used in electric power transformers and transmis
6、-sion cables. It is primarily intended for use with new oils, eitherinhibited or uninhibited.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health prac
7、tices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:D 129 Test Method for Sulfur in Petroleum Products (Gen-eral Bomb Method)2D 445 Test Method for Kinematic Viscosity of Transparentand Opaque Liquids (and the Calculation of Dynamic
8、Viscosity)2D 923 Practices for Sampling Electrical Insulating Liquids3D 1218 Test Method for Refractive Index and RefractiveDispersion of Hydrocarbon Liquids2D 1481 Test Method for Density and Relative Density(Specific Gravity) of Viscous Materials by Lipkin Bicap-illary Pycnometer2D 2007 Test Metho
9、d for Characteristic Groups in RubberExtender and Processing Oils and Other Petroleum De-rived Oils by the Clay Gel Absorption ChromatographicMethod2D 2501 Test Method for Calculation of Viscosity-GravityConstant (VGC) of Petroleum Oils2D 3238 Test Method for Calculation of Carbon Distributionand St
10、ructural Group Analysis of Petroleum Oils by then-d-M Method4D 4052 Test Method for Density and Relative Density ofLiquids by Digital Density Meter43. Terminology3.1 Definitions:3.1.1 percent of aromatic carbons (% CA)the weightpercent of the total carbon atoms present in an oil that arecombined in
11、aromatic ring-type structures.3.1.2 percent of naphthenic carbons (% CN)the weightpercent of the total carbon atoms present in an oil that arecombined in naphthenic ring-type structures.3.1.3 percent of paraffnic carbons (% CP)the weightpercent of the total carbon atoms present in an oil that arecom
12、bined in paraffinic chain-type structures.NOTE 1The resolution of carbon atoms into structural classificationsis independent of whether the structures exist as separate molecules or arecombined with other structural forms in a molecule. For example, aparaffinic chain may be either an aliphatic hydro
13、carbon molecule, or maybe an alkyl group attached to an aromatic or naphthenic ring.4. Summary of Test Method4.1 A sample of the oil to be analyzed by this method is firsttested to determine its viscosity, density and relative density(specific gravity), and refractive index. From these measuredprope
14、rties the viscosity-gravity constant (VGC) and refractiv-ity intercept (ri) are obtained by calculation, using the equa-tions given. The calculated values of VGC and riare used with1This test method is under the jurisdiction of ASTM Committee D27 onElectrical Insulating Liquids and Gases and is the
15、direct responsibility of Subcom-mittee D27.07 on Physical Tests.Current edition approved March 10, 2003. Published May 2003. Originallyapproved in 1963 as D 2140 63 T. Last previous edition approved in 1997 asD 2140 97.2Annual Book of ASTM Standards, Vol 05.01.3Annual Book of ASTM Standards, Vol 10.
16、03.4Annual Book of ASTM Standards, Vol 05.02.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.Fig. 1, to correlate those parameters with carbon-type compo-sition. The composition in terms of % CA,% CN, and % CPmay be read directly fro
17、m Fig. 1.NOTE 2Fig. 1 is a form of correlation chart that has been foundsatisfactory for use with this method. Other chart forms may be devisedand used in preference to Fig. 1 if it is determined that the data obtainedare consistent with similar data from Fig. 1. In addition, some users willfind it
18、convenient to develop a computer program or spreadsheet whichwill provide a consistent evaluation of the data.5. Significance and Use5.1 The primary purpose of this test method is to character-ize the carbon-type composition of an oil. It is also applicablein observing the effect on oil constitution
19、, of various refiningprocesses such as hydrotreating, solvent extraction, and soforth. It has secondary application in relating the chemicalnature of an oil to other phenomena that have been demon-strated to be related to oil composition.5.2 Results obtained by this method are similar to, but notide
20、ntical with, results obtained from Test Method D 3238. Therelationship between the two methods and the equations usedin deriving Fig. 1 are discussed in the literature.55.3 Although this test method tends to give consistentresults, it may not compare with direct measurement testmethods such as Test
21、Method D 2007.6. Apparatus6.1 No specific apparatus is required for use by this testmethod. However, to obtain the VGC and riparameters of Fig.1, certain measurements of basic physical properties of the test5Kurtz, S. S., King, R. W., Stout, W. J., Partikian, D. G., and Skrabek, E. A.,“Relationship
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD21402003STANDARDTESTMETHODFORCARBONTYPECOMPOSITIONOFINSULATINGOILSOFPETROLEUMORIGIN 石油 绝缘油 组分 标准

链接地址:http://www.mydoc123.com/p-511077.html