ASTM D1598-2002(2008) Standard Test Method for Time-to-Failure of Plastic Pipe Under Constant Internal Pressure.pdf
《ASTM D1598-2002(2008) Standard Test Method for Time-to-Failure of Plastic Pipe Under Constant Internal Pressure.pdf》由会员分享,可在线阅读,更多相关《ASTM D1598-2002(2008) Standard Test Method for Time-to-Failure of Plastic Pipe Under Constant Internal Pressure.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D 1598 02 (Reapproved 2008)An American National StandardStandard Test Method forTime-to-Failure of Plastic Pipe Under Constant InternalPressure1This standard is issued under the fixed designation D 1598; the number immediately following the designation indicates the year oforiginal adop
2、tion or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.
3、 Scope1.1 This test method covers the determination of the time-to-failure of both thermoplastic and reinforced thermosetting/resin pipe under constant internal pressure.1.2 This test method provides a method of characterizingplastics in the form of pipe under the conditions prescribed.1.3 The value
4、s stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate saf
5、ety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 2122 Test Method for Determining Dimensions of Ther-moplastic Pipe and FittingsD 2837 Test Method for Obtaining Hydrostatic DesignBasis for Thermoplastic Pipe
6、 Materials or Pressure DesignBasis for Thermoplastic Pipe ProductsD 2992 Practice for Obtaining Hydrostatic or Pressure De-sign Basis for “Fiberglass” (Glass-Fiber-ReinforcedThermosetting-Resin) Pipe and FittingsD 3517 Specification for “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Press
7、ure PipeD 3567 Practice for Determining Dimensions of “Fiber-glass” (Glass-Fiber-Reinforced Thermosetting Resin) Pipeand Fittings3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 failureany continuous loss of pressure with orwithout the transmission of the test fluid through the
8、 body ofthe specimen under test shall constitute failure. Failure may beby one or a combination of the following modes:3.1.2 ballooningany localized expansion of a pipe speci-men while under internal pressure. This is sometimes referredto as ductile failure.NOTE 1Overall distention which results fro
9、m creep caused by long-term stress is not considered to be a ballooning failure.3.1.3 free (unrestrained) end closurea pipe specimen endclosure (cap) that seals the end of the pipe against loss ofinternal fluid and pressure, and is fastened to the pipe speci-men.3.1.4 restrained end closurea pipe sp
10、ecimen end closure(cap) that seals the end of the specimen against loss of internalfluid and pressure, but is not fastened to the pipe specimen.Restrained end closures rely on tie-rod(s) through the pipespecimen or on external structure to resist internal pressure endthrust.3.1.5 rupturea break in t
11、he pipe wall with immediate lossof test fluid and continued loss at essentially no pressure. Ifrupture is not preceded by some yielding, this may be termeda non-ductile failure.3.1.6 seepage or weepingwater or fluid passing throughmicroscopic breaks in the pipe wall. A reduction in pressurewill freq
12、uently enable the pipe to carry fluid without evidenceof loss of the liquid.4. Summary of Test Method4.1 This test method consists of exposing specimens of pipeto a constant internal pressure while in a controlled environ-ment. Such a controlled environment may be accomplished by,1This test method i
13、s under the jurisdiction of ASTM Committee F17 on PlasticPiping Systems and is the direct responsibility of Subcommittee F17.40 on TestMethods.Current edition approved March 1, 2008. Published May 2008. Originallyapproved 1958. Last previous edition approved in 2002 as D 1598 02.2For referenced ASTM
14、 standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohoc
15、ken, PA 19428-2959, United States.but is not limited to, immersing the specimens in a controlledtemperature water or air bath. The time-to-failure is measured.NOTE 2Dimensional changes should be measured on specimensundergoing long-term strength tests. Measurements using circumferentialtapes, strain
16、 gages, or mechanical extensometers provide useful informa-tion.5. Significance and Use5.1 The data obtained by this test method are useful forestablishing stress versus failure time relationships in a con-trolled environment from which the hydrostatic design basisfor plastic pipe materials can be c
17、omputed. (Refer to TestMethod D 2837 and Practice D 2992.)5.2 In order to determine how plastics will perform as pipe,it is necessary to establish the stress-failure time relationshipsfor pipe over 2 or more logarithmic decades of time (hours) ina controlled environment. Because of the nature of the
18、 test andspecimens employed, no single line can adequately representthe data, and therefore the confidence limits should be estab-lished.NOTE 3Some materials may exhibit a nonlinear relationship betweenlog-stress and log-failure time, usually at short failure times. In such cases,the 105-hour stress
19、 value computed on the basis of short-term test datamay be significantly different than the value obtained when a distributionof data points in accordance with Test Method D 2837 is evaluated.However, these data may still be useful for quality control or otherapplications, provided correlation with
20、long-term data has been estab-lished.5.3 The factors that affect creep and long-term strengthbehavior of plastic pipe are not completely known at this time.This procedure takes into account those factors that are knownto have important influences and provides a tool for investi-gating others.5.4 Cre
21、ep, or nonrecoverable deformation for pipe made ofsome plastics, is as important as actual leakage in decidingwhether or not a pipe has failed. Specimens that exhibitlocalized ballooning, however, may lead to erroneous interpre-tation of the creep results unless a method of determining creepis estab
22、lished that precludes such a possibility. Circumferentialmeasurements at two or three selected positions on a specimenmay not be adequate.5.5 Great care must be used to ensure that specimens arerepresentative of the pipe under evaluation. Departure fromthis assumption may introduce discrepancies as
23、great as, if notgreater than, those due to departure from details of procedureoutlined in this test method.6. Apparatus6.1 Constant-Temperature SystemA water bath or otherfluid bath equipped so that uniform temperature is maintainedthroughout the bath. This may require agitation. If an air orother g
24、aseous environment is used, provision shall be made foradequate circulation.The test may be conducted at 23C (73F)or other selected temperatures as required and the temperaturetolerance requirements shall be 62C (63.6F).6.2 Pressurizing SystemAny device that is capable ofcontinuously applying consta
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD159820022008STANDARDTESTMETHODFORTIMETOFAILUREOFPLASTICPIPEUNDERCONSTANTINTERNALPRESSUREPDF

链接地址:http://www.mydoc123.com/p-510112.html