AASHTO T 380-2018 Standard Method of Test for Potential Alkali Reactivity of Aggregates and Effectiveness of ASR Mitigation Measures (Miniature Concrete Prism Test MCPT).pdf
《AASHTO T 380-2018 Standard Method of Test for Potential Alkali Reactivity of Aggregates and Effectiveness of ASR Mitigation Measures (Miniature Concrete Prism Test MCPT).pdf》由会员分享,可在线阅读,更多相关《AASHTO T 380-2018 Standard Method of Test for Potential Alkali Reactivity of Aggregates and Effectiveness of ASR Mitigation Measures (Miniature Concrete Prism Test MCPT).pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、Standard Method of Test for Potential Alkali Reactivity of Aggregates and Effectiveness of ASR Mitigation Measures (Miniature Concrete Prism Test, MCPT) AASHTO Designation: T 380-181Technical Section: 3c, Hardened Concrete Release: Group 1 (April) American Association of State Highway and Transporta
2、tion Officials 444 North Capitol Street N.W., Suite 249 Washington, D.C. 20001 TS-3c T 380-1 AASHTO Standard Method of Test for Potential Alkali Reactivity of Aggregates and Effectiveness of ASR Mitigation Measures (Miniature Concrete Prism Test, MCPT) AASHTO Designation: T 380-181Technical Section:
3、 3c, Hardened Concrete Release: Group 1 (April) 1. SCOPE 1.1. This test method allows detection of the potential for deleterious alkalisilica reaction of aggregate in miniature concrete prisms within 56 days (8 weeks) for most of the aggregates. An additional 28 days (4 weeks) may be necessary in th
4、e case of low/slow reacting aggregates to assess their potential reactivity. To assess the effectiveness of mitigation measures of SCMs (supplementary cementitious materials, such as fly ash, slag, silica fume, and others); the test method is conducted for 56 days. 1.2. The values stated in SI units
5、 are to be regarded as standard. The values in inch-pound units are shown in parentheses and are for informational purposes only. 1.3. This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its us
6、e. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 2. REFERENCED DOCUMENTS 2.1. AASHTO Standards: M 85, Portland Cement M 201, Mixing Rooms, Moist Cabinets, Moist Rooms,
7、 and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes R 70M/R 70, Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete T 19M/T 19, Bulk Density (“Unit Weight”) and Voids in Aggregate T 27, Sieve Analysis of Fine and Coarse A
8、ggregates T 303, Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to AlkaliSilica Reaction 2.2. ASTM Standards: C143/C143M, Standard Test Method for Slump of Hydraulic-Cement Concrete C157/C157M, Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar
9、and Concrete 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.TS-3c T 380-2 AASHTO C192/C192M, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory C295/C295M, Standard Guide
10、 for Petrographic Examination of Aggregates for Concrete C490/C490M, Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete C511, Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used i
11、n the Testing of Hydraulic Cements and Concretes C702/C702M, Standard Practice for Reducing Samples of Aggregate to Testing Size C778, Standard Specification for Standard Sand C1260, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) C1293, Standard Test Method fo
12、r Determination of Length Change of Concrete Due to Alkali-Silica Reaction D75/D75M, Standard Practice for Sampling Aggregates D1193, Standard Specification for Reagent Water 2.3. Federal Standard: Fed. Std. No. 29, CFR 1910.1200 OSHA Hazard Communication Standard; see also Permissible Exposure Limi
13、tsAnn otated Tables, https:/www.osha.gov/dsg/annotated-pels/ 3. SIGNIFICANCE AND USE 3.1. Alkalisilica reaction (ASR) is a chemical reaction between certain forms of reactive silica present in aggregates and alkali hydroxides present in the concrete pore solution. The alkali ions (Na+and K+) are pri
14、marily derived from portland cement, although other sources can potentially elevate their concentration in the pore solution. 3.2. This test method is intended to evaluate the potential of an aggregate (fine and coarse) to expand deleteriously due to any form of alkalisilica reactivity. A companion
15、nonreactive aggregate should be used with a reactive aggregate in question. Also, this test method is intended to assess the effectiveness of various mitigation measures. 3.3. When selecting a sample or deciding on the number of samples for test, it is important to recognize the variability in litho
16、logy of material from a given source, whether a deposit of sand, gravel, or a rock formation of any origin. For specific advice, see ASTM C295/C295M. 3.4. MCPT was developed as an alternative to the existing standard test methods such as ASTM C1260 and ASTM C1293 to evaluate aggregate reactivity. Th
17、is test method was developed with some modifications to standard test methods T 303 (ASTM C1260) and ASTM C1293. When evaluating coarse aggregate reactivity, MCPT has the advantage of not requiring the coarse aggregate to be crushed into smaller (sand-sized) particles, as typically required in ASTM
18、C1260 Also, the MCPT method yields test results in 8 weeks to characterize the aggregate reactivity, which is much shorter than the test duration required in ASTM C1293. 3.5. The total alkali content of the cement used in this test method should have a Na2Oeqcontent of 0.90 0.10 percent. 3.6. For th
19、e vast majority of the aggregates that are either nonreactive or moderately to highly reactive, this test characterizes the aggregate reactivity in 8 weeks. For some specific aggregates that have a tendency to exhibit low/slow reactivity, an additional 4 weeks of testing is required. For the purpose
20、 of providing guidance on aggregate reactivity characterization, the following general guidelines are used in classifying the aggregate: 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.TS-3c T 380-3 AAS
21、HTO 3.6.1. Very highly/highly reactive aggregates are considered as those aggregates that, when present in concrete with typical alkali loading (3 to 5 lb/yd3), exhibit incipient signs of ASR distress in the field, typically at an age less than 5 years. 3.6.2. Moderate reactive aggregates are consid
22、ered as those aggregates that, when present in concrete with typical alkali loading (3 to 5 lb/yd3), exhibit incipient signs of ASR distress in the field, typically at an age between 5 and 10 years. 3.6.3. Low/slow reactive aggregates are considered as those aggregates that, when present in concrete
23、 with typical alkali loading (3 to 5 lb/yd3), exhibit incipient signs of ASR distress in the field, typically at an age beyond 10 years. 3.7. Results of tests conducted as described herein should form a part of the basis for a decision as to whether precautions should be taken against excessive expa
24、nsion due to alkalisilica reaction. This decision should be made before a particular aggregate is used in concrete construction. 3.8. The basic intent of this test method is to develop information on a particular aggregate at a specific alkali level of 5.25 kg/m3(8.85 lb/yd3). It has been found that
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AASHTOT3802018STANDARDMETHODOFTESTFORPOTENTIALALKALIREACTIVITYOFAGGREGATESANDEFFECTIVENESSOFASRMITIGATIONMEASURESMINIATURECONCRETEPRISMTESTMCPTPDF

链接地址:http://www.mydoc123.com/p-418330.html