TECHNOLOGY MANAGEMENT 3be- TECHNOLOGICAL .ppt
《TECHNOLOGY MANAGEMENT 3be- TECHNOLOGICAL .ppt》由会员分享,可在线阅读,更多相关《TECHNOLOGY MANAGEMENT 3be- TECHNOLOGICAL .ppt(86页珍藏版)》请在麦多课文档分享上搜索。
1、TECHNOLOGY MANAGEMENT 3be: TECHNOLOGICAL FORECASTING Essentials,CP Beukman Engineering Management Programme University of Canterbury Issue 1.0 April 2000,Think of Fairy Tales,Jack and the beanstalkSpace ShuttleSeven League BootsBoeing 747Magic MirrorTelevision / Internet,Ask what people want,“We wan
2、t to be able to”,Objectives,Introduce TF methods Application to R&D Measures of technology,TIME,PARAMETER OF PERFORMANCE,LIMIT OF PERFORMANCE DUE TO A NATURAL CONSTRAINT,Embryonic,TECHNOLOGICAL MATURITY,Growth,Mature,Aging,Methods of forecasting,Extrapolation Leading indicators Causal models Probabi
3、listic methods Expert opinion,Extrapolation Methods,Assume the process which produced the historical outcomes will continue to produce future outcomes. Growth curves apply to single technical approaches involve an upper limit Trends apply to overall technologies,Growth Curves,Types growth aids furth
4、er growth upper limit is the only influenceApplication performance extent of adoption,Growth Curve Equations Pearl Curve,Equation:-bt y = L /(1 + ae )y = value L = upper limit a,b = numerical fitted coefficients extract a,b from historic data, not best fit,Growth Curve Equations Gompertz curve,Equat
5、ion:-kt-bey = LeIf y is very small, the curve becomes almost exponential,Growth Curves of Performance,Apply to a single technical approachUpper limit is set by physics & chemistry of technical approach,Year,1,1880,1900,1920,1940,1960,10,100,Efficiency of Incandescent Lamps Gompertz Curve Fitted,Lume
6、ns/Watt,Semi Log plot No accelerating factor (Current performance makes development easier),Year,10,1900,1910,1920,1930,1940,100,1000,Aircraft Speed 1906 - 1925,Speed m/h,Official speed records All a/c wood & fabric Upper limit set by structural strength U/L = 350 mph,Base 10 Pearl Curve,A - BtY = L
7、 / ( 1 + 10 )Fisher-Pry TransformationA - BtY / ( L - Y ) = 10Grows by a factor of 10 in 1/B years,Year,0.01,1904,1908,1912,1916,1920,0.1,1,Aircraft Speed 1906 - 1925,Fisher-Pry Ratio,1924,10,1E+2,The trend assumes thatthe past will be replicatedin the future,Extent of Adoption,Forecast fraction of
8、applications using the technology Typically follows Pearl Curve Early adoptions and further adoption Last holdouts represent hard-to-fill applications Commonly displayed as Fisher-Pry curve,Year,0,1970,1980,1990,50,100,Microwave Ovens in US Households,Percent Households with microwave ovens,2000,10,
9、20,30,40,60,70,80,90,Year,0.01,1970,1975,1980,1985,1990,0.1,1,Microwave Ovens in US Households,Log Number of Households,1995,10,100,Year,1999,2000,2001,2002,Households with structured wiring in the USA,Thousands of Households,2003,0,500,100,200,300,400,600,700,800,900,Year,1E+3,1999,2000,2001,2002,1
10、E+4,1E+5,Households with structured wiring in the USA,Number of households -log scale,2003,1E+6,1E+7,Year,0.00,1985,1990,1995,2000,0.01,0.10,Adoption of Anti-Lock Brakes USA Vehicles,Cars with ABS / Cars without ABS,1.00,10.00,100.00,1000.00,Year,0.01,0.10,Fisher-Pry Ratio,1.00,10.00,1975,1980,1985,
11、1990,1995,Cassette Tapes Compact Disks,Music Recording,Choice of Growth Curves,Forecasting Performance Unexploited potential in early improvements: Pearl Curve No unexploited potential: Gompertz Curve Forecasting Adoption Imitation aids adoption: Pearl Curve Existing adoption aids further adoption:
12、Pearl Curve Otherwise: Gompertz Curve,Long Term Forecasts,Growth curves cannot project beyond the upper limit of the technical approach There is often a need to prepare a forecast which goes beyond the current technical approach Trend projection is how this is done,How Will Trend be Extended?,Some n
13、ew technical approach will be needed New approach will have a higher upper limit than the one currently used It is not the job of the forecaster to identify what this new approach will (actually) be Sufficient to warn that it will come,Trends,1. No imminent progress 2. Growth proportional to progres
14、s already made (exponential growth)ktY = y0 eln Y = ln y0 + ktlog Y = log y0 + kt log e,10,100,Speed mph,1000,10,000,1900,1920,1940,1960,1980,Wood & fabric,All metal,Subsonic jets,Aircraft speed, growth curves and trend,Supersonic jets,100,Maximum Speed mph,1000,10,000,1920,1940,1960,1980,Transport
15、aircraft speed trend,Combat Aircraft Speed Trend,Mach 2.2,Speed Trends of Combat vs Transport Aircraft, Showing Lead Trend Effect,Mach 2.7,2000,Source: Ralph C Lenz, Forecasts of Exploding Technologies by Trend Extrapolation,Combat Aircraft,Transport Aircraft,1,10,Nanoseconds,100,1000,1970,1980,1990
16、,2000,Clock Time of Microprocessors and Vector Processors,MIPS R2000,Cray 1S,Cray X-MP,Cray Y-MP,Cray C90,MIPS R3000,HP 7000,R4000,R4000,DEC Alpha,0.1,1.0,Minimum Feature Size Microns,10.0,100.0,1970,1980,1990,2000,Minimum Feature Size Dynamic Random Access Memories,Moores Law,1e-4,1e-1,Seconds,1e+2
17、,1820,1880,1900,1980,Exposure time for Photographic Film f16 in Bright Sunlight,1e-3,1e-2,1e+0,1e+1,1e+3,1e+4,1840,1920,1940,1960,1860,1830 exposure = 30 minutes Now around 1/10,000 sec No comment on graininess Film not optimised for illumination source,10,Bushels/Acre,1800,1920,1960,Yield of Corn o
18、n US Farms Effect of an outside influence,100,1840,2000,1880,Trend break in 1930s Driver = politics Before 1930 - increase = more land or more horses 1930 higher prices & limitation on land subdivision + chemicals, fertilisers, weedkillers,1929 drought,Current Dollars,1750,1900,1950,USA Management C
19、apability Dollar Magnitude of Engineering Projects,1800,2000,1850,1e+4,1e+7,1e+10,1e+5,1e+6,1e+8,1e+9,1e+11,Canals,Roads/Rail,Electrical,Bridges,Space/Nuclear,Petroleum,Miscellaneous,Trends: Summary,Used to project beyond the limits of current technical approach Based on series of successive technic
20、al approaches Growth in performance is usually exponential Qualitative trends can be developed if necessary,Leading Indicators,Precursors of coming events May be events of different nature from event to be forecast Succession of leading indicators gives additional strength to the forecast,Stages of
21、Innovation,Scientific findings Laboratory feasibility Operating prototype Commercial introduction/operational use Widespread adoption Diffusion to other areas Social & economic impact,Automotive Innovations,Normal sequence of innovation: demonstration car prestige car mass market car,Lag Times for A
22、utomotive Innovations,0,2,4,6,8,10,12,14,16,Turbocharger,Plastic structural parts,Prestige - mass,Demo - Prestige,Plastic Body Shell,Fuel Injection,Electronic Ignition,Electronic Engine Ctrl,Automobile technology,Turbo - migrated from dieselsFuel injectors ability to manufacture lower cost injectors
23、 (supporting technology in the manufacturing process),Military Technology,In the past civilian technology has led military rifled guns - sporting before military machine guns - resisted by militarySince 1930s military has led civilian, especially in aerospaceNow changing again,100,Maximum Speed mph,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- TECHNOLOGYMANAGEMENT3BETECHNOLOGICALPPT
