Ch 4. Linear Models for Classification (1-2)Pattern .ppt
《Ch 4. Linear Models for Classification (1-2)Pattern .ppt》由会员分享,可在线阅读,更多相关《Ch 4. Linear Models for Classification (1-2)Pattern .ppt(30页珍藏版)》请在麦多课文档分享上搜索。
1、Ch 4. Linear Models for Classification (1/2) Pattern Recognition and Machine Learning, C. M. Bishop, 2006.,Summarized and revised by Hee-Woong Lim,2,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Contents,4.1. Discriminant Functions 4.2. Probabilistic Generative Models,3,(C) 2006, SNU Bioint
2、elligence Lab, http:/bi.snu.ac.kr/,Classification Models,Linear classification model (D-1)-dimensional hyperplane for D-dimensional input space 1-of-K coding scheme for K2 classes, such as t = (0, 1, 0, 0, 0)T Discriminant function Directly assigns each vector x to a specific class. ex. Fishers line
3、ar discriminant Approaches using conditional probability Separation of inference and decision states Two approaches Direct modeling of the posterior probability Generative approach Modeling likelihood and prior probability to calculate the posterior probability Capable of generating samples,4,(C) 20
4、06, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Discriminant Functions-Two Classes,Classification by hyperplanes or,5,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Discriminant Functions-Multiple Classes,One-versus-the-rest classifier K-1 classifiers for a K-class discriminant Ambiguous wh
5、en more than two classifiers say yes. One-versus-one classifier K(K-1)/2 binary discriminant functions Majority voting ambiguousness with equal scores,One-versus-the-rest,One-versus-one,6,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Discriminant Functions-Multiple Classes (Contd),K-class d
6、iscriminant comprising K linear functions Assigns x to the corresponding class having the maximum output.The decision regions are always singly connected and convex.,7,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Approaches for Learning Parameters for Linear Discriminant Functions,Least sq
7、uare method Fishers linear discriminant Relation to least squares Multiple classes Perceptron algorithm,8,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Least Square Method,Minimization of the sum-of-squares error (SSE) 1-of-K binary coding scheme for the target vector t.For a training data
8、set, xn, tn where n = 1,N. The sum of squares error function isMinimizing SSE gives,Pseudo inverse,9,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Least Square Method (Contd) -Limit and Disadvantage,The least-squares solutions yields y(x) whose elements sum to 1, but do not ensure the outpu
9、ts to be in the range 0,1. Vulnerable to outliers Because SSE function penalizes too correct examples i.e. far from the decision boundary. ML under Gaussian conditional distribution Unimodal vs. multimodal,10,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Least Square Method (Contd) -Limit a
10、nd Disadvantage,Lack of robustness comes from Least square method corresponds to the maximum likelihood under the assumption of Gaussian distribution. Binary target vectors are far from this assumption.,Least square solution,Logistic regression,11,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.k
11、r/,Fishers Linear Discriminant,Linear classification model as dimensionality reduction from the D-dimensional space to one dimension. In case of two classesFinding w such that the projected data are clustered well.,12,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Fishers Linear Discriminant
12、 (Contd),Maximizing projected mean distance? The distance between the cluster means, m1 and m2 projected onto w.Not appropriate when the covariances are nondiagonal.,13,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Fishers Linear Discriminant (Contd),Integrate the within-class variance of t
13、he projected data. Finding w that maximizes J(w).J(w) is maximized when Fishers linear discriminant If the within-class covariance is isotropic, w is proportional to the difference of the class means as in the previous case.,SB: Between-class covariance matrix,SW: Within-class covariance matrix,in t
14、he direction of (m2-m1),14,(C) 2006, SNU Biointelligence Lab, http:/bi.snu.ac.kr/,Fishers Linear Discriminant -Relation to Least Squares-,Fisher criterion as a special case of least squares When setting target values as: N/N1 for class C1 and N/N2 for class C2.,15,(C) 2006, SNU Biointelligence Lab,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CH4LINEARMODELSFORCLASSIFICATION12PATTERNPPT

链接地址:http://www.mydoc123.com/p-379443.html