2020版高考数学一轮复习第2章函数、导数及其应用第8讲函数与方程讲义理(含解析).doc
《2020版高考数学一轮复习第2章函数、导数及其应用第8讲函数与方程讲义理(含解析).doc》由会员分享,可在线阅读,更多相关《2020版高考数学一轮复习第2章函数、导数及其应用第8讲函数与方程讲义理(含解析).doc(11页珍藏版)》请在麦多课文档分享上搜索。
1、1第 8 讲 函数与方程考纲解读 1.结合二次函数的图象,了解函数的零点与方程根的关系,能够判断一元二次方程根的存在性与根的个数(重点、难点)2.根据具体函数的图象,能够用二分法求相应方程的近似解考向预测 从近三年高考情况来看,本讲一直是高考的热点,尤其是函数零点(方程的根)个数的判断及由零点存在性定理判断零点是否存在预测 2020 年高考将以零点个数的判断或根据零点的个数求参数的取值范围为主要命题方向,以客观题或以解答题中一问的形式呈现.1函数的零点(1)定义:对于函数 y f(x)(x D),把使 f(x)0 的实数 x 叫做函数 y f(x)(x D)的01 零点(2)三个等价关系(3)
2、存在性定理2二次函数 y ax2 bx c(a0)的图象与零点的关系 b24 ac 0 0 0)的图象2与 x 轴的交点 201 102 无零点个数 203 104 01概念辨析(1)函数的零点就是函数的图象与 x 轴的交点( )(2)函数 y f(x)在区间( a, b)内有零点(函数图象连续不断),则 f(a)f(b)0.( )(3)若 f(x)在区间 a, b上连续不断,且 f(a)f(b)0,则 f(x)在( a, b)内没有零点( )(4)只要函数有零点,我们就可以用二分法求出零点的近似值( )(5)若函数 f(x)在( a, b)上单调且 f(a)f(b)0, f(b)( b c)
3、(b a)0.由零点存在性定理得函数 f(x)的两个零点分别位于区间( a, b)和( b, c)内3函数 f(x) x23 x18 在区间1,8上_(填“存在”或“不存在”)零点答案 存在解析 令 f(x)0,得 x23 x180,解得 x6 或3.显然 61,8,31,8,所以 f(x) x23 x18 在区间1,8上存在零点,是 6.函数零点所在区间的判断方法及适合题型方法 解读 适合题型定理法 利用函数零点的存在性定理进行判断 能够容易判断区间端点值所对应函数值的正负如举例说明 2图象法 画出函数图象,通过观察图象与 x 轴在给定区间上是否有交点来判断 容易画出函数的图象如举例说明 1
4、解方程法可先解对应方程,然后看所求的根是否落在给定区间上当对应方程 f(x)0 易解时如举例说明 31在下列区间中,函数 f(x)e x4 x3 的零点所在的区间可能为( )A. B. C. D.(14, 0) (0, 14) (14, 12) (12, 34)答案 D解析 因为 f e 4 3e 40.12 (34) 34 所以 f f 0,故x0(1,0)故 n1.题型 函数零点个数的判定二1函数 f(x)Error!的零点个数是_答案 2解析 当 x0 时,令 x220,解得 x (正根舍去),所以在(,0上有一2个零点;当 x0 时,易知 f(x)在(0,)上是增函数又因为 f(2)2
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 高考 数学 一轮 复习 函数 导数 及其 应用 方程 义理 解析 DOC
