版选修4_5.docx
《版选修4_5.docx》由会员分享,可在线阅读,更多相关《版选修4_5.docx(6页珍藏版)》请在麦多课文档分享上搜索。
1、1第四讲数学归纳法证明不等式一、知识梳理 数 学 归纳 法 数 学 归 纳法 原 理数 学 归 纳 法应 用 举 例 整 除 问 题几 何 问 题 其 他 不 等 式 二、题型、技巧归纳题型一、归纳递推要用好归纳假设数学归纳法中两步缺一不可,第一步归纳奠基,第二步起到递推传递作用在第二步的证明中,首先进行归纳假设,而且必须应用归纳假设( n k 时命题成立),推出 n k1时,命题成立例 1 用数学归纳法证明:对于 nN , 1() .112 123 134 nn 1再练一题1数列 的前 n 项的和记 为 Sn.1nn 1(1)求出 S1, S2, S3的值;(2)猜想出 Sn的表达式;(3)
2、用数学归纳法证明你的猜想题型二、不等式证明中的强化命题如果 c 为常数,用数学归纳法证明 f(n)5)时命题成立33设 nN ,则 2n与 n 的大小关系是( )A2 nn B2 n0, nN, n2.(1)证明:函数 Fn(x) fn(x)2 在 内有且仅有一个零点(记为 xn),且 xn x(12, 1) 12 12;n 1n(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为gn(x),比较 fn(x)和 gn(x)的大小,并加以证明4参考答案1 【解析】 左边等比数列求和 Sn1 12n1 1221( )n ,12 12764即 1( )n ,( )n .12
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 _5DOCX
