ASTM F2260-2003(2012)e1 Standard Test Method for Determining Degree of Deacetylation in Chitosan Salts by Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy《用质子核磁共振 (1H NMR) 光.pdf
《ASTM F2260-2003(2012)e1 Standard Test Method for Determining Degree of Deacetylation in Chitosan Salts by Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy《用质子核磁共振 (1H NMR) 光.pdf》由会员分享,可在线阅读,更多相关《ASTM F2260-2003(2012)e1 Standard Test Method for Determining Degree of Deacetylation in Chitosan Salts by Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy《用质子核磁共振 (1H NMR) 光.pdf(6页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: F2260 03 (Reapproved 2012)1Standard Test Method forDetermining Degree of Deacetylation in Chitosan Salts byProton Nuclear Magnetic Resonance (1H NMR)Spectroscopy1This standard is issued under the fixed designation F2260; the number immediately following the designation indicates the yea
2、r oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEEditorial changes were made to subsections 2.2, 2.3, and 4.5 i
3、n November 2012.1. Scope1.1 This test method covers the determination of the degreeof deacetylation in chitosan and chitosan salts intended for usein biomedical and pharmaceutical applications as well as inTissue Engineered Medical Products (TEMPs) by high-resolution proton NMR (1H NMR). A guide for
4、 the character-ization of chitosan salts has been published as Guide F2103.1.2 The test method is applicable for determining the degreeof deacetylation (% DA) of chitosan chloride and chitosanglutamate salts and is valid for % DA values from 50 up to andincluding 99. It is simple, rapid, and suitabl
5、e for routine use.Knowledge of the degree of deacetylation is important for anunderstanding of the functionality of chitosan salts in TEMPformulations and applications. This test method will assist endusers in choosing the correct chitosan for their particularapplication. Chitosan salts may have uti
6、lity in drug deliveryapplications, as a scaffold or matrix material, and in cell andtissue encapsulation applications.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.4 This standard does not purport to address all of thesa
7、fety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2F386 Test Method for Thickness
8、 of Resilient Flooring Ma-terials Having Flat SurfacesF2103 Guide for Characterization and Testing of ChitosanSalts as Starting Materials Intended for Use in Biomedicaland Tissue-Engineered Medical Product Applications2.2 United States Pharmacopeia Document:USP 35-NF30 Nuclear Magnetic Resonance32.3
9、 European Pharmacopoeia Document:European Pharmacopoeia Monograph 2008:1774 ChitosanChloride43. Terminology3.1 Definitions:3.1.1 chitosan, na linear polysaccharide consisting of(14) linked 2-acetamido-2-deoxy-D-glucopyranose (Glc-NAc) and 2-amino-2-deoxy-D-glucopyranose (GlcN). Chito-san is a polysa
10、ccharide derived by N-deacetylation of chitin.3.1.2 degradation, nchange in the chemical structure,physical properties, or appearance of a material. Degradationof polysaccharides occurs via cleavage of the glycosidic bonds.It is important to note that degradation is not synonymous withdecomposition.
11、 Degradation is often used as a synonym fordepolymerization when referring to polymers.3.1.3 degree of deacetylation, nthe fraction or percentageof glucosamine units (GlcN: deacetylated monomers) in achitosan polymer molecule.3.1.4 depolymerization, nreduction in the length of apolymer chain to form
12、 shorter polymeric units.4. Significance and Use4.1 The degree of deacetylation of chitosan salts is animportant characterization parameter since the charge density1This test method is under the jurisdiction of ASTM Committee F04 on Medicaland Surgical Materials and Devices and is the direct respons
13、ibility of SubcommitteeF04.42 on Biomaterials and Biomolecules for TEMPs.Current edition approved Oct. 1, 2012. Published November 2012. Originallyapproved in 2003. Last previous edition approved in 2008 as F2260 03 (2008).DOI: 10.1520/F2260-03R12E01.2For referenced ASTM standards, visit the ASTM we
14、bsite, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from U.S. Pharmacopeia (USP), 12601 Twinbrook Pkwy., Rockville,MD 20852-1790, http:/www.usp.org.4Av
15、ailable from European Directorate for the Quality of Medicines (EDQM),Publications and Services, European Pharmacopoeia, BP 907, F-67029 Strasbourg,France.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1of the chitosan molecule is res
16、ponsible for potential biologicaland functional effects.4.2 The degree of deacetylation (% DA) of water-solublechitosan salts can be determined by1H nuclear magneticresonance spectroscopy (1H NMR). Several workers havereported on the NMR determination of chemical compositionand sequential arrangemen
17、t of monomer units in chitin andchitosan. The test method described is primarily based on thework of Vrum et al. (1991),5which represents the firstpublication on routine determination of chemical compositionin chitosans by solution state1H NMR spectroscopy. This testmethod is applicable for determin
18、ing the % DA of chitosanchloride and chitosan glutamate salts. It is a simple, rapid, andsuitable method for routine use. Quantitative1H NMR spec-troscopy reports directly on the relative concentration ofchemically distinct protons in the sample, consequently, noassumptions, calibration curves or ca
19、lculations other thandetermination of relative signal intensity ratios are necessary.4.3 In order to obtain well-resolved NMR spectra, depo-lymerization of chitosans to a number average degree ofpolymerization (DPn) of 15 to 30 is required. This reduces theviscosity and increases the mobility of the
20、 molecules.Althoughthere are several options for depolymerization of chitosans, themost convenient procedure is that of nitrous acid degradationin deuterated water. The reaction is selective, stoichiometricwith respect to GlcN, rapid, and easily controlled (Allan 32768 at400 MHz.Typical temperature
21、equilibration time is 15 min and spec-trum acquisition time is approximately 10 min or less.5Vrum, K. M., Anthonsen, M. W., Grasdalen, H., and Smidsrd, O., “Deter-mination of the Degree of N-acetylation and the Distribution of N-acetyl Groups inPartially N-deacetylated Chitins (Chitosans) by High-Fi
22、eld N.M.R. Spectroscopy,”Carbohydr. Res., Vol 211, 1991, pp. 1723.6Allan, G. G. and Peyron, M., “Molecular Weight Manipulation of Chitosan 1:Kinetics of Depolymerization by NitrousAcid,” Carbohydr. Res., Vol 277, 1995, pp.257-272.F2260 03 (2012)126.2.1.2 The use of digital filters and appropriate di
23、gitalsignal processing is recommended for good baseline perfor-mance.6.2.2 Processing:6.2.2.1 Use exponential window with 0.5 Hz line broaden-ing and zero-fill to 64k data points before Fourier transforma-tion.6.2.2.2 Relative areas of proton signals are estimated bynumeric integration of the releva
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMF226020032012E1STANDARDTESTMETHODFORDETERMININGDEGREEOFDEACETYLATIONINCHITOSANSALTSBYPROTONNUCLEARMAGNETICRESONANCE1HNMRSPECTROSCOPY

链接地址:http://www.mydoc123.com/p-538235.html