ASTM D6239-2003 Standard Test Method for Uranium in Drinking Water by High-Resolution Alpha-Liquid-Scintillation Spectrometry《用高分辨α液体闪烁谱测量法测定饮用水中铀的标准试验方法》.pdf
《ASTM D6239-2003 Standard Test Method for Uranium in Drinking Water by High-Resolution Alpha-Liquid-Scintillation Spectrometry《用高分辨α液体闪烁谱测量法测定饮用水中铀的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D6239-2003 Standard Test Method for Uranium in Drinking Water by High-Resolution Alpha-Liquid-Scintillation Spectrometry《用高分辨α液体闪烁谱测量法测定饮用水中铀的标准试验方法》.pdf(6页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D 6239 03Standard Test Method forUranium in Drinking Water by High-Resolution Alpha-Liquid-Scintillation Spectrometry1This standard is issued under the fixed designation D 6239; the number immediately following the designation indicates the year oforiginal adoption or, in the case of re
2、vision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers determining the total solubleuranium activity in drinking water in the ra
3、nge of 0.037 Bq/L(1 pCi/L) or greater by selective solvent extraction andhigh-resolution alpha-liquid-scintillation spectrometry. The en-ergy resolution obtainable with this technique also allowsestimation of the238Uto234U activity ratio.1.2 This test method was tested successfully with reagentwater
4、 and drinking water. It is the users responsibility toensure the validity of this test method for waters of untestedmatrices.1.3 The values stated in SI units are to be regarded asstandard. The values given in parentheses are for informationonly.1.4 This standard does not purport to address all of t
5、hesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Section 9.2. Referenced Documents
6、2.1 ASTM Standards:2D 1129 Terminology Relating to WaterD 1193 Specifications for Reagent WaterD 2777 Practice for Determination of Precision and Bias ofApplicable Methods of Committee D19 on WaterD 3370 Practices for Sampling Water from Closed ConduitsD 3648 Practices for the Measurement of Radioac
7、tivity3. Terminology3.1 Definitions:3.1.1 For definitions of terms used in this test method, referto Terminology D 1129. For terms not included in this refer-ence, refer to other published glossaries (1)34. Summary of Test Method4.1 This test method is based on solvent extraction technol-ogy to isol
8、ate and concentrate uranium in drinking water forcounting via a high-resolution alpha-liquid-scintillation spec-trometer.4.2 To determine total uranium, as well as limited isotopicuranium (238U and234U) by activity in drinking water, a200mL acidified water sample is first spiked with232Uasanisotopic
9、 tracer, boiled briefly to remove radon, and evaporateduntil less than 50 mL remain. The solution is then madeapproximately 0.01 M in diethylenetriaminepentaacetic acid(DTPA) and the pH is adjusted to between 2.5 and 3.0. Thesample is transferred to a separatory funnel and equilibratedwith 1.50 mL o
10、f an extractive scintillator containing a dialkylphosphoric acid extracting agent. Under these conditions onlyuranium is quantitatively transferred to the organic phase whilethe extraction of undesired ions is masked by the presence ofDTPA. Following phase separation, 1.00 mL of the organicphase is
11、sparged with dry argon gas to remove oxygen, achemical quench agent, and counted on a high-resolutionalpha-liquid-scintillation spectrometer and multichannel ana-lyzer (MCA).4.3 The alpha spectrum of a sample that contains naturaluranium and that is analyzed with an internal232U tracer willappear si
12、milar to the spectrum in Fig. 1. An approximateresolution of 250 keV FWHM for238U (4.2 MeV) allowsresolution and analysis of the238U,234U, and232U energyspectrum peaks when their activities are of the same order ofmagnitude. Resolution of the235U (4.4 MeV) alpha peak is notpossible, but its activity
13、, which accounts for approximately2.2 % of the total natural uranium activity, is included in thetotal uranium activity calculated when the238U and234U peaksare in the region of interest (ROI). When the238U and234Upeaks are integrated separately, a portion of the235U activity1This test method is und
14、er the jurisdiction of ASTM Committee D19 on Waterand is the direct responsibility of Subcommittee D19.04 on Methods of Radiochemi-cal Analysis.Current edition approved June 10, 2003. Published August 2003. Originallyapproved in 1998. Last previous edition approved in 2002 as D 623902.2For reference
15、d ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The boldface numbers in parenthesis refer to the list of references at the
16、 end ofthe text.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.will be included in the238U activity and the rest in the234Uactivity, depending on the exact ROIs selected. Likewise, ifpresent,236U and233U will not be resolved by the
17、spectrometer;however, their activity will be included in the total uraniumROI.5. Significance and Use5.1 This test method is a fast, cost-effective method that canyield limited isotopic activity levels for238U and234U, as wellas total uranium activity. Although232U is incorporated as atracer, uraniu
18、m recoveries for this test measured during thedevelopmental work on this test method were usually between95 and 105%.5.2 The high-resolution alpha-liquid-scintillation spectrom-eter offers a constant 99.6 6 0.1 % counting efficiency andinstrument backgrounds as low as 0.001 counts per minute(cpm) ov
19、er a 4 to 7 MeV energy range according to McDowelland McDowell (2). Count rates for extractive scintillatorblanks and reagent blanks usually range from 0.01 cpm to 0.1cpm.6. Interferences6.1 During the development work on this method, less than1% of241Am,238Pu,210Po,226Ra,222Rn, and230Th present int
20、he original sample were found to extract under the conditionsdescribed for the extraction of uranium by this procedure.Uranium extraction is quantitative at pH values from 1.0 to 5.0but extraction of230Th and238Pu increased slightly at pHvalues below 2.5 and phase separation was slower and lesscompl
21、ete at pH values above 3.5. DTPA concentration is notcritical in the range of 0.001 M to 0.1 M as long as astoichiometric excess relative to the concentration of interfer-ing ions, especially ferric ion (Fe3+), is maintained.As much as30 mg of Fe3+did not interfere with the extraction of uraniumwhen
22、 the DTPA concentration was 0.010 M, and as much as250 mg of Fe3+did not interfere when the DTPAconcentrationwas increased to 0.10 M. As much as 2000 mg of calcium ion(Ca2+) did not present an interference in a 0.010 M DTPAsolution. Sulfate ion (SO42-) did not interfere with the extrac-tion of urani
23、um at concentrations as high as 1 M, but hydrogenoxalate (HC2O4) concentrations greater than 0.001 M anddihydrogen phosphate (H2PO4) concentrations greater than0.2 M resulted in decreased uranium recovery. These concen-trations, however, are several orders of magnitude higher thanthe normal concentr
24、ation of these ions in drinking water.6.2 Beta- and gamma-emitting radionuclide interference isminimized (typically 99.95 % rejection of beta/gamma pulses)according to McDowell and McDowell (2) by the pulse-shapediscrimination of the high-resolution alpha-liquid-scintillationspectrometer.6.3 Quenchi
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD62392003STANDARDTESTMETHODFORURANIUMINDRINKINGWATERBYHIGHRESOLUTIONALPHALIQUIDSCINTILLATIONSPECTROMETRY

链接地址:http://www.mydoc123.com/p-521932.html