An Introduction toType-2 Fuzzy Sets and Systems.ppt
《An Introduction toType-2 Fuzzy Sets and Systems.ppt》由会员分享,可在线阅读,更多相关《An Introduction toType-2 Fuzzy Sets and Systems.ppt(90页珍藏版)》请在麦多课文档分享上搜索。
1、An Introduction to Type-2 Fuzzy Sets and Systems,Dr Simon Couplandsimoncdmu.ac.uk Centre for Computational Intelligence De Montfort University Leicester United Kingdom www.cci.dmu.ac.uk,Contents,My background Motivation Interval Type-2 Fuzzy Sets and Systems Generalised Type-2 Fuzzy Sets and Systems
2、 An Example Application Mobile Robotics,My Background,Research Fellow from the UK Here on a collaborative grant with Prof. Keller Worked in type-2 fuzzy logic for 5 years Awarded PhD “Geometric Type-2 Fuzzy Systems” in 2006 Working on: Computational problems of generalised type-2 fuzzy logic Applica
3、tions,My Background,Created and maintain type2fuzzylogic.org Information, experts, publications (450), news and events 600 members 70 countries,Type-2 Publications,Type-1 Fuzzy Sets,Extend crisp sets, where x A or x A Membership is a continuous grade 0,1 Describe vagueness not uncertainty (Klir and
4、Yuan),Why do we need type-2 fuzzy sets?,Type-1 fuzzy sets do not model uncertainty:,1.8,0.62,Tall,0,1,Height (m),Why do we need type-2 fuzzy sets?,So, a person x, whos height is 1.8 metres is Tall to degree 0.62 (Tall(1.8) = 0.62) Improvement on Tall or not Tall Vagueness, but no uncertainty How do
5、we model uncertainty?,Why do we need type-2 fuzzy sets?,We need, x is Tall to degree about 0.62 But how to model about 0.62? Two schools of thought: Interval type-2 fuzzy sets about 0.62 is a crisp interval Generalised type-2 fuzzy sets about 0.62 is a fuzzy set Run blurring example,Interval Type-2
6、Fuzzy Sets,Interval type-2 fuzzy sets - interval membership gradesX is primary domain Jx is the secondary domain All secondary grades (A(x,u) equal 1 Fully characterised by upper and lower membership functions (Mendel and John),A = (x,u), 1) | x X, u Jx, Jx 0,1,Interval Type-2 Fuzzy Sets,Returning t
7、o Tall,Tall,0,1,Height (m),Upper MF Tall,Lower MF Tall,Type -1 MF,= FOU,Interval Type-2 Fuzzy Sets,Fuzzification:,1.8,0.42,Tall,0,1,Height (m),0.78,Tall (1.8) = 0.42,0.78,Interval Type-2 Fuzzy Sets,Defuzzification two stages: Type-reduction Interval centroid Type-reduction (centroid):GC = 1Jx1 1JxN
8、1 = Cl, Cr,/,i=1 xii,i=1 i,N,N,(Karnik and Mendel),Interval Type-2 Fuzzy Sets,Only need to identify two embedded fuzzy sets Only Jx1 and JxN will belong to those sets Identify two switch points on X Switch point against X is a convex function Mendel and Liu showed switch point = C where l,r,Interval
9、 Type-2 Fuzzy Sets,Defuzzification:,Tall,0,1,Height (m),Cl,Cr,Interval Type-2 Fuzzy Sets,X,Cl switch point,Centroid,Cl,Interval Type-2 Fuzzy Sets,X,Cr switch point,Centroid,Cr,Interval Type-2 Fuzzy Sets,These properties are exploited by Karnik-Mendel algorithm Converges in at most N steps 3-4 steps
10、typical Widely used Hardware implementation,Interval Type-2 Fuzzy Systems,Fuzzifier,Defuzzifier,Rules,Inference,Type-reducer,Crisp inputs,Crisp outputs,Type- reduced outputs (interval),Output processing,Type-2 Interval FIS,Interval Type-2 Fuzzy Systems,Mamdani or TSK systems Well only look at Mamdan
11、i Example rule base:If x is A and y is B then z is G1 If x is C and y is D then z is G2,Interval Type-2 Fuzzy Systems,Antecedent calculation:Rule 1: RA1 = A(x) B(y), A(x) B(y)Rule 2: RA2 = C(x) D(y), C(x) D(y)where is a t-norm, generally min or prod,Interval Type-2 Fuzzy Systems,Consequent calculati
12、on:Rule 1: G1 = inG1(zi) RA1, G1(zi) RA1Rule 2: G2 = inG2(zi) RA2, G2(zi) RA1,Interval Type-2 Fuzzy Systems,Consequent combination:Gc = in G1 (gi) V G2 (gi) , G1 (gi) V G2 (gi) Where V is a t-conorm, generally max,Interval Type-2 Fuzzy Systems,A,0,1,0,1,0,1,0,1,0,1,0,1,C,B,D,G1,G2,Interval Type-2 Fu
13、zzy Systems,x,0,1,0,1,0,1,0,1,0,1,0,1,y,A,C,B,D,G1,G2,Interval Type-2 Fuzzy Systems,x,0,1,0,1,0,1,0,1,0,1,0,1,(min),y,A,C,B,D,G1,G2,Interval Type-2 Fuzzy Systems,x,0,1,0,1,0,1,0,1,0,1,0,1,(min),y,A,C,B,D,G1,G2,A,C,B,D,Interval Type-2 Fuzzy Systems,x,0,1,0,1,0,1,0,1,0,1,0,1,0,1,(min),y,max,Cl,Cr,G1,G
14、2,GC,Interval Type-2 Fuzzy Systems,x,0,1,0,1,0,1,0,1,0,1,0,1,0,1,(prod),y,0,1,max,Cl,Cr,B,D,A,C,G1,G2,GC,Interval Type-2 Fuzzy Systems,Summary: Membership grades are crisp intervals Two parallel type-1 systems (up to defuzzification) Defuzzification in two stages: Type-reduction (KM) Defuzzification
15、,Generalised Type-2 Fuzzy Sets,Generalised type-2 fuzzy sets type-1 fuzzy numbers for membership gradesX is primary domain Jx is the secondary domain A(x) is the secondary membership function at x (vertical slice representation) All secondary grades (A(x,u) 0,1,A = (x,u), A(x,u) | x X, u Jx, Jx 0,1,
16、Generalised Type-2 Fuzzy Sets,Representation theorem (Mendel and John) Represent generalised type-2 fuzzy sets and operations as collection of embedded fuzzy sets,Ae = (x, (u, A(x,u) | x X, u Jx, Jx 0,1,A = Ae,j,j = 1,n,Only used for theoretical working (to date),Generalised Type-2 Fuzzy Sets,Fuzzif
17、ication,X,(x,u),(x),1,1,Generalised Type-2 Fuzzy Sets,Fuzzification,X,(x,u),(x),1,1,x,Generalised Type-2 Fuzzy Sets,Fuzzification,X,(x,u),(x),1,1,x,Generalised Type-2 Fuzzy Sets,Fuzzification,X,(x,u),(x),1,1,x,(x,u),(x),1,1,A,A(x),Generalised Type-2 Fuzzy Sets,Antecedent and the meet Two SMFs: f = i
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANINTRODUCTIONTOTYPE2FUZZYSETSANDSYSTEMSPPT
