ASTM F3265-2017 Standard Test Method for Grid-Video Obstacle Measurement《网格视频障碍测量的标准试验方法》.pdf
《ASTM F3265-2017 Standard Test Method for Grid-Video Obstacle Measurement《网格视频障碍测量的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM F3265-2017 Standard Test Method for Grid-Video Obstacle Measurement《网格视频障碍测量的标准试验方法》.pdf(11页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: F3265 17Standard Test Method forGrid-Video Obstacle Measurement1This standard is issued under the fixed designation F3265; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parenthe
2、ses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONSafe control of automatic/automated/autonomous-unmanned ground vehicles (A-UGVs) is criticalin industrial environments where workers are or may be presen
3、t. A-UGV safe control is typicallybased on sensors that detect stationary standard test pieces (used in ANSI/ITSDF B56.5) representinghumans. This and other test method developments have been experimented and published.2, 3Theexperimental results were used to recommend improvements to the ANSI/ITSDF
4、 B56.5 safetystandard stopping distance exception language in 2014. Subcommittee consensus changed ANSI/ITSDF B56.5 to make it mandatory to reduce vehicle kinetic energy should an object (for example,person, materials, or equipment) appear in the vehicle path and within the stop detect range of thev
5、ehicle safety sensors. The language that has been proposed as an amendment to the ANSI/ITSDFB56.5 standard is: “Should an object suddenly appear in the path of the vehicle between the leadingedge of the sensing field and the vehicle (for example, an object falling from overhead or a pedestriansteppi
6、ng into the path of a vehicle at the last instant), the vehicle shall initiate braking in accordancewith brake system (see 8.8.1), but may not be expected to stop in time to prevent contact with object.”While manufacturers of A-UGVs may have access to internal system logs and data that demonstrateth
7、e successful initiation of braking as required, users may not have access to that information. This testmethod provides an optional, standard performance test method for A-UGVs to enable industrialvehicle manufacturers and users to implement a common test to demonstrate expected vehicleoperation in
8、the case of objects appearing in the A-UGV path and within the stop-detect range of thevehicle safety sensors.1. Scope1.1 This test method measures an automatic/automated/autonomous-unmanned ground vehicle (A-UGV) kinetic en-ergy reduction when objects appear in the A-UGV path andwithin the stop-det
9、ect range of the vehicle safety sensors insituations in which the desired reaction is for the vehicle to stopas opposed to avoiding the obstacle by traveling on analternative path. The test method measures the performance ofthe A-UGV only and does not measure the effect on thestability of loads. Thi
10、s test method describes the use of one testpiece as described in ANSI/ITSDF B56.5. Other test piecesfrom ANSI/ITSDF B56.5 could be used. This test method isintended for use by A-UGV manufacturers, installers, andusers. This test method does not substitute for required safetytesting underANSI/ITSDF B
11、56.5 or other normative standards.1.2 Performing LocationThis test method shall be per-formed in a testing laboratory or the location where theapparatus and environmental test conditions are implemented.Environmental conditions are recorded as specified in PracticeF3218.1.3 UnitsThe values stated in
12、 SI units are to be regardedas the standard. The values given in parentheses are not precisemathematical conversion to inch-pound units. They are closeapproximate equivalents for the purpose of specifying materialdimensions or quantities that are readily available to avoidexcessive fabrication costs
13、 of test apparatuses while maintain-ing repeatability and reproducibility of the test method results.1This test method is under the jurisdiction of ASTM Committee F45 onDriverless Automatic Guided Industrial Vehicles and is the direct responsibility ofSubcommittee F45.03 on Object Detection and Prot
14、ection.Current edition approved July 15, 2017. Published August 2017. DOI: 10.1520/F3265-17.2Bostelman, Roger, Shackleford, Will, Cheok, Geraldine, and Saidi, Kamel,“Safe Control of Manufacturing Vehicles Research Towards Standard TestMethods,” Progress in Material Handling Practice, Book Chapter, J
15、une 2012.3Bostelman, Roger, Norcross, Richard, Falco, Joe, and Marvel, Jeremy, “Devel-opment of Standard Test Methods for Unmanned and Manned Industrial VehiclesUsed Near Humans,” SPIE 2013, Baltimore, Maryland, May 2013.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshoho
16、cken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organi
17、zation Technical Barriers to Trade (TBT) Committee.1These values given in parentheses are provided for informationonly and are not considered standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this
18、 standard to establish appro-priate safety, health and environmental practices and deter-mine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decisi
19、on on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:4F3200 Terminology for Driverless Automatic Guided Indus-trial VehiclesF3218 Practic
20、e for Recording Environmental Effects forUtilization with A-UGV Test Methods2.2 ANSI/ITSDF Standard:5ANSI/ITSDF B56.5 Safety Standard for Driverless, Auto-matic Guided Industrial Vehicles and Automated Func-tions of Manned Industrial Vehicles3. Terminology3.1 Terms not defined herein are defined in
21、TerminologyF3200.3.2 Definitions of Terms Specific to This Standard:3.2.1 collide timewhen the automatic/automated/autonomous-unmanned ground vehicle (A-UGV) collides withthe test piece.3.2.2 defined areas, nspace constrained by test methodboundaries for A-unmanned ground vehicle (A-UGV) opera-tion.
22、3.2.3 enter time, nwhen the test piece enters the stop zonetriggering photosensor 1.3.2.4 start line, nline across the path of the vehicle used tosignal when the test piece can be inserted into the stopdetection range as measured in 7.3.3.2.5 start location, nthe initial zero velocity position ofA-U
23、GV at beginning of each test repetition; the start locationshould be at a point from which the vehicle can accelerate upto test speed before the leading edge crosses the start line alongthe test trajectory.3.2.6 start time, nwhen the A-UGV crosses the start linewhile traveling at speed.3.2.7 stop ti
24、me, nwhen the A-UGV stops because ofdetection of the test piece.3.2.8 stop zone, nthe area in front of the direction of travelof the A-UGV where activation of the obstruction sensorcauses a safety stop of the vehicle as per ANSI/ITSDF B56.5.3.2.9 stopping distance, ndistance required for vehicle tos
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMF32652017STANDARDTESTMETHODFORGRIDVIDEOOBSTACLEMEASUREMENT 网格 视频 障碍 测量 标准 试验 方法 PDF

链接地址:http://www.mydoc123.com/p-540200.html