ASTM D4618-1992(2010) Standard Specification for Design and Fabrication of Flue Gas Desulfurization System Components for Protective Lining Application《烟气脱硫系统组件保护性衬砌的设计和制造的标准规范》.pdf
《ASTM D4618-1992(2010) Standard Specification for Design and Fabrication of Flue Gas Desulfurization System Components for Protective Lining Application《烟气脱硫系统组件保护性衬砌的设计和制造的标准规范》.pdf》由会员分享,可在线阅读,更多相关《ASTM D4618-1992(2010) Standard Specification for Design and Fabrication of Flue Gas Desulfurization System Components for Protective Lining Application《烟气脱硫系统组件保护性衬砌的设计和制造的标准规范》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D4618 92 (Reapproved 2010)Standard Specification forDesign and Fabrication of Flue Gas Desulfurization SystemComponents for Protective Lining Application1This standard is issued under the fixed designation D4618; the number immediately following the designation indicates the year oforig
2、inal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This specification covers the design and fabrication ofmetal co
3、mponents for Flue Gas Desulfurization (FGD) equip-ment, including absorbers, tanks, chimney liners, ductwork andassociated equipment that are to be lined for corrosion orabrasion resistance, or both.1.2 Limitations:1.2.1 This specification is intended only to define the designconsiderations for succ
4、essful application and performance ofprotective linings for FGD system components.1.2.2 It does not cover structural performance of FGDcomponents.1.2.3 It does not cover use of metallic linings.1.3 This specification represents the minimum requirementsfor lining work. In cases where the manufacturer
5、s instructionsand recommendations differ from this specification, thesedifferences must be resolved before fabrication is started.1.4 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for inf
6、ormation onlyand are not considered standard.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regula
7、tory limitations prior to use.2. Design/Engineering Requirements2.1 Rigidity:2.1.1 The components shall be designed so that the interiormetal surfaces are sufficiently rigid for the intended liningmaterials. Manufacturers recommendations for maximumstrains or deflection limits for the lining materia
8、l shall befollowed.2.1.2 The weight of the lining system shall be considered inthe structural design of the component.2.1.3 The design shall consider the effects of pressure, wind,seismic and other design loads.2.1.4 Vibration may cause flexing or high surface strains onthe lining. This is of partic
9、ular concern to rigid lining materialsand shall be minimized.2.1.5 Special consideration shall be given to all conditionsof potentially excessive strain such as unsupported bottomareas, oil-canning, out of roundness, sidewall-to-bottom joints,etc.2.1.5.1 Where a component is on a concrete foundation
10、,grouting shall be done if necessary to correct unsupportedbottom areas.2.1.5.2 Sand fill shall not be used for bottom support unlessprovisions are made to ensure that the sand cannot be lost dueto erosion.2.2 Accessibility:2.2.1 All interior surfaces of the components shall bedesigned to be readily
11、 accessible for welding, grinding, surfacepreparation, and lining application.2.2.2 The minimum manway size for a working entranceduring lining application shall be 36 in. (900 mm) in diameteror 24 in. (600 mm) width by 36 in. (900 mm) height.2.2.2.1 Closed components shall have a minimum of twomanw
12、ays, one near the top and one near the bottom, preferablylocated 180 apart to facilitate adequate ventilation for work-ers.2.2.2.2 Additional or larger openings may be required tofacilitate ventilation and material handling. The lining materialapplicator should be consulted for specific requirements
13、.2.3 Shell Penetrations:2.3.1 Openings such as, inlets, manholes, and outlet nozzlesshall be flush with the interior wall.2.3.1.1 Inlet nozzles may extend into vessels if incomingfluids will be detrimental to lining materials.2.3.2 Any exterior or interior connection shall be flanged inorder to faci
14、litate lining.2.3.3 The maximum length of flanged nozzles, 4 in. (100mm) and greater in diameter, shall not exceed the dimensionsin Table 1.1This specification is under the jurisdiction of ASTM Committee D33 onProtective Coating and Lining Work for Power Generation Facilities and is the directrespon
15、sibility of Subcommittee D33.09 on Protective Lining for FGD Systems.Current edition approved July 1, 2010. Published July 2010. Originally approvedin 1987. Last previous edition approved in 2003 as D4618 92 (2003). DOI:10.1520/D4618-92R10.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box
16、 C700, West Conshohocken, PA 19428-2959, United States.2.3.3.1 Only 4 in. (100 mm) diameter and larger nozzlesshall be used for maximum reliability of the lining system.2.3.3.2 As an alternative to lined nozzles, compatible pre-fabricated, reinforced plastic, ceramic or alloy metal inserts(sleeves)
17、may be used if they offer superior corrosion andabrasion protection. Lining shall overlap onto prefabricatedliners.2.3.3.3 If an insert is used as an alternate, the lining shalloverlap unto the insert or some other means of ensuring anadequate seal should be provided.2.3.4 Lining thickness may dicta
18、te changes in nozzle di-mensions to achieve design flow rates.2.4 Appurtenances Inside Components:2.4.1 The requirements in Sections 2 and 3 apply to anyappurtenances that are being lined and installed inside a linedcomponent, such as agitators, anti-swirl baffles, gaging de-vices, internal piping,
19、ladders, and support brackets.2.4.2 If appurtenances inside the component cannot belined, they shall be made of corrosion-resistant materials. Ifalloys are used, the lining shall carry over the welded area ontothe alloy a minimum of 3 in. (76 mm). Some linings mayrequire special designs to protect t
20、he edge of the lining. Ifbolted connections are used, dielectric insulation shall beprovided.2.4.3 Heating elements shall be attached with a minimumclearance of 6 in. (150 mm) from the surface of the linedcomponent. Greater clearance may be required to protect thelining from excessive temperature co
21、nditions depending on thetemperature of the element.2.4.4 Special precautions shall be taken in lined componentswhere severe abrasion/impingement damage may occur. Pre-cautionary design measures, such as wear plates, brick liners oradded coating thickness, shall be considered when necessary.2.5 Stru
22、ctural Reinforcement Members and Supports:2.5.1 Structural reinforcement members (stiffeners) shouldbe installed on the vessel exterior, wherever necessary. How-ever, if such members are installed internally they shall befabricated of simple closed shapes such as round bars, pipe, orbox beams for ea
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD461819922010STANDARDSPECIFICATIONFORDESIGNANDFABRICATIONOFFLUEGASDESULFURIZATIONSYSTEMCOMPONENTSFORPROTECTIVELININGAPPLICATION

链接地址:http://www.mydoc123.com/p-517509.html