ASTM D3513-2002(2007) Standard Test Method for Overlength Fiber Content of Manufactured Staple Fiber《人造短纤维中超长纤维含量的标准测试方法》.pdf
《ASTM D3513-2002(2007) Standard Test Method for Overlength Fiber Content of Manufactured Staple Fiber《人造短纤维中超长纤维含量的标准测试方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D3513-2002(2007) Standard Test Method for Overlength Fiber Content of Manufactured Staple Fiber《人造短纤维中超长纤维含量的标准测试方法》.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D 3513 02 (Reapproved 2007)Standard Test Method forOverlength Fiber Content of Manufactured Staple Fiber1This standard is issued under the fixed designation D 3513; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the y
2、ear of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the percentby number of overlength or multiple length fibers in a
3、 sampleof manufactured cut staple. The method is applicable to fibertaken immediately after manufacturing, from the bale, or frompartially processed stock.NOTE 1For measurement of length and length distribution of manu-factured staple fibers, refer to Test Method D 5103.1.2 This test method covers p
4、rocedures using the Fibrosam-pler Model 335A (inch-pound units), the Fibrosampler Model335B (SI units), and Fibrosampler combs Model 336.1.2.1 The Fibrosampler Model 335A is equipped with asample plate that has 15.8-mm (58-in.) diameter sample holesand is recommended for use on blended staple taken
5、from thefiber blender or from a carding machine.1.2.2 The Fibrosampler Model 335B is equipped with asample plate that has 10-mm (0.4-in.) diameter sample holesand is recommended for use on unblended staple as may betaken from the fiber cutter or from a bale of staple fiber.1.3 The values stated in e
6、ither SI units or inch-pound unitsare to be regarded separately as the standard. The values statedin each unit are not exact equivalents; therefore, each unit mustbe used independently of the other.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its u
7、se. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 123 Terminology Relating to TextilesD 1447 Test Method for Length and Le
8、ngth Uniformity ofCotton Fibers by Fibrograph MeasurementD 2258 Practice for Sampling Yarn for TestingD 3333 Practice for Sampling Manufactured Staple Fibers,Sliver, or Tow for TestingD 3888 Terminology Relating to Open-End SpinningD 3990 Terminology Relating to Fabric DefectsD 4849 Terminology Rela
9、ting to Yarns and FibersD 5103 Test Method for Length and Length Distribution ofManufactured Staple Fibers (Single-Fiber Test)3. Terminology3.1 Definitions:3.1.1 For definitions of textile terms used in this testmethod: fiber beard, staple, overlength staple fibers andmultiple-length staple fibers,
10、refer to Terminology D 4849.3.1.2 For definitions of other textile terms used in this testmethod, refer to Terminologies D 123, D 3888, D 3990, andD 4849.4. Summary of Test Method4.1 Fibers are caught randomly on a comb to form a fiberbeard. The probability that a given fiber length group repre-sent
11、ed in the original fiber population will appear in the testspecimen is proportional to the ratio of the total length of thatfiber length group to the total fiber length of the originalsample. The beard is biased in the favor of long fibers.4.2 The fiber beard is brushed out and laid on a specimenboa
12、rd. The density of the beard of the cut staple tapers to a linethat is parallel to the base of the comb. The overlength fibersare observed to extend beyond this line and they can beidentified easily.4.3 The noticeably longer fibers are pulled from the fiberbeard, verified for over- or multiple-lengt
13、h and counted. Theresult is then expressed as the percent overlength and percentmultiple-length fiber in the original population.5. Significance and Use5.1 The existence of overlength fiber in manufactured staplecan cause serious problems in the spinning of these fibers intoyarn. Overlength fibers m
14、ay create problems in carding, butmore especially high-strength multiple cut fibers may causecockling in spinning.1This test method is under the jurisdiction of ASTM Committee D13 on Textilesand is the direct responsibility of Subcommittee D13.58 on Yarns and Fibers.Current edition approved July 1,
15、2007. Published August 2007. Originallyapproved in 1976. Last previous edition approved in 2002 as D 3513 02.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the sta
16、ndards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.5.2 Since the overlength fibers are caused by dull ordamaged cutting knives or by uneven flow of tow to the staplecutter, their existence
17、 within the fiber population is not uniformand their occurrence in the population follows a highly skeweddistribution.5.3 Manual methods of determining overlength fiber requiremuch more operator time, and the standard deviations of thetest between laboratories and operators are high. Use of theFibro
18、sampler method greatly reduces both operator time andstandard deviation of testing.5.4 In manufacturing it is important to know if fibers areoverlength due to looping of the tow or multiple length due todamaged cutters.5.5 This method for testing staple fiber for overlength fiberis not recommended f
19、or acceptance testing (see 13.1).5.5.1 In some cases the purchaser and the supplier may haveto test a commercial shipment of one or more specific materialsby the best available method, even though the method has notbeen recommended for acceptance testing of commercialshipments. If there are differen
20、ces of practical significancebetween reported test results for two laboratories (or more),comparative test should be performed to determine if there is astatistical bias between them, using competent statistical assis-tance. As a minimum, use the samples for such a comparativetests that are as homog
21、eneous as possible, drawn from the samelot of material as the samples that resulted in disparate resultsduring initial testing and randomly assigned in equal numbersto each laboratory. The test results from the laboratoriesinvolved should be compared using a statistical test forunpaired data, a prob
22、ability level chosen prior to the testingseries. If a bias is found, either its cause must be found andcorrected, or future test results for that material must beadjusted in consideration of the known bias.6. Apparatus6.1 Fibrosampler,3Model 335A of 335B (Fig. 1), equippedwith the following:6.1.1 Co
23、mbs,3Model 336 (Fig. 2).6.1.2 Spacing Gage.6.1.3 Specimen Board, board covered with short pile orplush surface on one side, for displaying the test specimen.6.1.4 Brush, for brushing the test specimen.6.1.5 Tweezers, for removing the long fibers from thespecimen board for verification.NOTE 2Fibrosam
24、pler Model 192, which is used for sampling cotton,(Method D 1447) has been used successfully with this method, but theabove listed models and combs yield better results because long fibers areless likely to be pulled from the combs during beard preparation.6.2 Laboratory Carding Machine or Opener/Bl
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD351320022007STANDARDTESTMETHODFOROVERLENGTHFIBERCONTENTOFMANUFACTUREDSTAPLEFIBER 人造 短纤维 超长 纤维 含量

链接地址:http://www.mydoc123.com/p-514914.html