ASTM B481-1968(2008) Standard Practice for Preparation of Titanium and Titanium Alloys for Electroplating《电镀用钛和钛合金的制备的标准实施规程》.pdf
《ASTM B481-1968(2008) Standard Practice for Preparation of Titanium and Titanium Alloys for Electroplating《电镀用钛和钛合金的制备的标准实施规程》.pdf》由会员分享,可在线阅读,更多相关《ASTM B481-1968(2008) Standard Practice for Preparation of Titanium and Titanium Alloys for Electroplating《电镀用钛和钛合金的制备的标准实施规程》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: B 481 68 (Reapproved 2008)Standard Practice forPreparation of Titanium and Titanium Alloysfor Electroplating1This standard is issued under the fixed designation B 481; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, th
2、e year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONFull utilization of the light weight and high strength of titanium is prevented by the tendency it hasto gal
3、l and seize and by its lack of corrosion resistance at elevated temperatures. Frequently theselimitations can be overcome by electrodepositing upon the titanium a metal with satisfactoryproperties. Titanium is an active metal that rapidly forms an adherent oxide coating in the presence ofoxygen and
4、water. This coating prevents the application of adherent electrodeposits by the morefamiliar preparative processes. For this reason, the special processes described in this practice weredeveloped.1. Scope1.1 This practice describes processes that have been foundto be successful in producing adherent
5、 electrodeposits of goodquality on titanium and certain titanium alloys. Not all of theprocesses that have been reported as successful are described,but rather three basic ones that have had the widest use. Arather complete listing of the published work on electroplatingon titanium is given in the l
6、ist of references which appear at theend of this practice.1.2 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bil
7、ity of regulatory limitations prior to use. For a specifichazard statement, see 3.1.2. Referenced Documents2.1 ASTM Standards:2B 343 Practice for Preparation of Nickel for Electroplatingwith Nickel3. Reagents3.1 Purity of ReagentsAll acids and chemicals used inthis practice are technical grade. Acid
8、 solutions are based uponthe following assay materials (WarningUse hydrofluoricacid with extreme care.):Hydrochloric acid 37 mass %, density 1.184 g/mLHydrofluoric acid 60 mass %, density 1.235 g/mLHydrofluoric acid 71 mass %, density 1.260 g/mLHydrofluoric acid 100 mass %, density 1.0005 g/mLNitric
9、 acid 69 mass %, density 1.409 g/mL3.2 Purity of WaterUse ordinary industrial or potablewater for preparing solutions and rinsing.4. Process No. 14.1 CleaningRemove oil, grease, and other soil by appro-priate conventional processes such as vapor degreasing, alka-line cleaning, grinding, or blasting.
10、4.2 ActivatingActivation may be done by chemical orelectrochemical etching or liquid abrasive blasting. It is pos-sible that all three processes will work equally well on puretitanium and all common alloys; however, only those for whicheach process has been demonstrated to be successful are givenher
11、e. The suitability of a process for an alloy not listed shouldbe experimentally determined before committing productionparts.4.2.1 Chemical Etch:4.2.1.1 The following procedure is suitable for commer-cially pure titanium and for 6Al-4V, 4Al-4Mn, and 3Al-5Cr.4.2.1.2 PickleImmerse in the following sol
12、ution, at roomtemperature, until red fumes are evolved:HF (60 mass %) 1 volume andHNO3(69 mass %) 3 volumes4.2.1.3 Rinse.4.2.1.4 EtchImmerse in the following aqueous solutionfor 20 min (Note that a special formulation is recommended for3Al-5Cr alloy).1This practice is under the jurisdiction of ASTM
13、Committee B08 on Metallicand Inorganic Coatings and is the direct responsibility of Subcommittee B08.02 onPre Treatment.Current edition approved Aug. 1, 2008 Published September 2008. Originallyapproved in 1968. Last previous edition approved in 2003 as B 48168 (2003)e1.2For referenced ASTM standard
14、s, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 1
15、9428-2959, United States.Standard 3Al-5CrNa2Cr2O72H2O 250 g/L 390 g/LHF (60 % mass) 48 mL/L 25 mL/LTemperature 82 to 100C 82 to 100CNOTE 1For platinum electroplating on commercially pure titanium,etching may be done by immersion for 5 min in hot (94C min)concentrated hydrochloric acid followed by ri
16、nsing and platinum electro-plating (6)34.2.2 Rinse.4.2.3 ElectroplateElectroplate with chromium, with cop-per from an acid bath, or with nickel from either a Watts orsulfamate bath, or deposit nickel in an autocatalytic bath. If adeposit of some metal other than these three is desired, firstapply a
17、nickel coating with a minimum thickness of 1 mfollowed by the desired final metal.4.2.4 Heat Treat:4.2.4.1 The adhesion of the electrodeposit is mechanicaland, therefore, although of a relatively high order of magni-tude, it may be less than adequate. If a higher degree ofadhesion is desired, use ni
18、ckel as an intermediate coating andheat treat. This causes interdiffusion of the nickel and titaniumand produces a metallurgical bond. The heat treatment can beperformed after all electroplating is applied or immediatelyafter the nickel electroplating. This later approach is used incertain cases, fo
19、r example, when undesirable diffusion canoccur between the nickel and the subsequent deposit.4.2.4.2 Heat treat in an inert gas atmosphere (for example,argon) for 1 to4hat540to800C. The exact time andtemperature should be selected by subjecting electroplated testpieces to adhesion or performance tes
20、ts or both.4.2.4.3 If the heat treatment is performed before applyingthe subsequent deposit, the nickel will have to be activatedbefore continuing the electroplating. Methods of activation aregiven in Practice B 343.5. Process No. 25.1 CleanSee 4.1.5.2 Electrochemical Etch:5.2.1 The following proced
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMB48119682008STANDARDPRACTICEFORPREPARATIONOFTITANIUMANDTITANIUMALLOYSFORELECTROPLATING 电镀 钛合金 制备

链接地址:http://www.mydoc123.com/p-461347.html