2018年上海市高考数学试题+解析.pdf
《2018年上海市高考数学试题+解析.pdf》由会员分享,可在线阅读,更多相关《2018年上海市高考数学试题+解析.pdf(24页珍藏版)》请在麦多课文档分享上搜索。
1、第1页(共24页)绝密启用前2018年上海市高考数学试卷考试时间:120分钟;试卷整理:微信公众号-浙江数学题号一二三总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第卷(选择题)评卷人得分一选择题(共4小题,满分20分,每小题5分)1(5分)(2018上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A2 B2 C2 D42(5分)(2018上海)已知aR,则“a1”是“1”的()A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件3(5分)(2018上海)九章算术中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA
2、1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()第2页(共24页)A4 B8 C12 D164(5分)(2018上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()ABCD0第3页(共24页)第卷(非选择题)评卷人得分二填空题(共12小题,满分54分)5(4分)(2018上海)行列式的值为6(4分)(2018上海)双曲线y2=1的渐近线方程为7(4分)(2018上海)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示)8(
3、4分)(2018上海)设常数aR,函数f(x)=1og2(x+a)若f(x)的反函数的图象经过点(3,1),则a=9(4分)(2018上海)已知复数z满足(1+i)z=17i(i是虚数单位),则|z|=10(4分)(2018上海)记等差数列an的前n项和为Sn,若a3=0,a6+a7=14,则S7=11(5分)(2018上海)已知2,1,1,2,3,若幂函数f(x)=x为奇函数,且在(0,+)上递减,则=12(5分)(2018上海)在平面直角坐标系中,已知点A(1,0)、B(2,0),E、F是y轴上的两个动点,且| |=2,则的最小值为13(5分)(2018上海)有编号互不相同的五个砝码,其中
4、5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示)14(5分)(2018上海)设等比数列an的通项公式为an=qn1(nN*),前n项和为第4页(共24页)Sn若=,则q=15(5分)(2018上海)已知常数a0,函数f(x)=的图象经过点P(p,),Q(q,)若2p+q=36pq,则a=16(5分)(2018上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为评卷人得分三解答题(共5小题,满分76分)17(14分)(2018上海)已知圆锥的顶点为P,底面圆心为O
5、,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且AOB=90,M为线段AB的中点,如图求异面直线PM与OB所成的角的大小18(14分)(2018上海)设常数aR,函数f(x)=asin2x+2cos2x(1)若f(x)为偶函数,求a的值;(2)若f()= +1,求方程f(x)=1在区间,上的解第5页(共24页)19(14分)(2018上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时某地上班族S中的成员仅以自驾或公交方式通勤分析显示:当S中x%(0x100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公
6、交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义20(17分)(2018上海)设常数t2在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线:y2=8x(0xt,y0)l与x轴交于点A、与交于点BP、Q分别是曲线与线段AB上的动点(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPE
7、Q,使得点E在上?若存在,求第6页(共24页)点P的坐标;若不存在,说明理由21(17分)(2018上海)给定无穷数列an,若无穷数列bn满足:对任意nN*,都有|bnan|1,则称bn与an“接近”(1)设an是首项为1,公比为的等比数列,bn=an+1+1,nN*,判断数列bn是否与an接近,并说明理由;(2)设数列an的前四项为:a1=1,a2=2,a3=4,a4=8,bn是一个与an接近的数列,记集合M=x|x=bi,i=1,2,3,4,求M中元素的个数m;(3)已知an是公差为d的等差数列,若存在数列bn满足:bn与an接近,且在b2b1,b3b2,b201b200中至少有100个为
8、正数,求d的取值范围第7页(共24页)2018年上海市高考数学试卷参考答案与试题解析一选择题(共4小题,满分20分,每小题5分)1(5分)(2018上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A2 B2 C2 D4【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2故选:C【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查2(5分)(2018上海)已知aR,则“a1”是“1”的()A充分非必要条件
9、B必要非充分条件C充要条件D既非充分又非必要条件【分析】“a1” “ ”,“ ” “a1或a0”,由此能求出结果【解答】解:aR,则“a1” “ ”,“ ” “a1或a0”,第8页(共24页)“a1”是“ ”的充分非必要条件故选:A【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题3(5分)(2018上海)九章算术中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A4 B8 C12 D16【分析】根据新定义和正
10、六边形的性质可得答案【解答】解:根据正六边形的性质,则D1A1ABB1,D1A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有26=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D第9页(共24页)【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题4(5分)(2018上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()ABCD0【分析】直接利用定义性函数的应用求出结果【解答】解:设D是含数
11、1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,故f(1)=cos =,故选:B【点评】本题考查的知识要点:定义性函数的应用二填空题(共12小题,满分54分)5(4分)(2018上海)行列式的值为18【分析】直接利用行列式的定义,计算求解即可【解答】解:行列式=4521=18故答案为:18【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查第10页(共24页)6(4分)(2018上海)双曲线y2=1的渐近线方程为【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程【解答】解:双曲线的a=2,b=1,
12、焦点在x轴上而双曲线的渐近线方程为y=双曲线的渐近线方程为y=故答案为:y=【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想7(4分)(2018上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示)【分析】利用二项式展开式的通项公式求得展开式中x2的系数【解答】解:二项式(1+x)7展开式的通项公式为Tr+1= xr,令r=2,得展开式中x2的系数为=21故答案为:21【点评】本题考查了二项展开式的通项公式的应用问题,是基础题8(4分)(2018上海)设常数aR,函数f(x)=1og2(x+a)若f(x)的反
13、函数的图象经过点(3,1),则a= 7第11页(共24页)【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a【解答】解:常数aR,函数f(x)=1og2(x+a)f(x)的反函数的图象经过点(3,1),函数f(x)=1og2(x+a)的图象经过点(1,3),log2(1+a)=3,解得a=7故答案为:7【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题9(4分)(2018上海)已知复数z满足(1+i)z=17i(i是虚数单位),则|z|= 5【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,
14、再由复数求模公式计算得答案【解答】解:由(1+i)z=17i,得,则|z|=故答案为:5【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题10(4分)(2018上海)记等差数列an的前n项和为Sn,若a3=0,a6+a7=14,则S7=14【分析】利用等差数列通项公式列出方程组,求出a1=4,d=2,由此能求出S7第12页(共24页)【解答】解:等差数列an的前n项和为Sn,a3=0,a6+a7=14,解得a1=4,d=2,S7=7a1+ =28+42=14故答案为:14【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程
15、思想,是基础题11(5分)(2018上海)已知2,1,1,2,3,若幂函数f(x)=x为奇函数,且在(0,+)上递减,则=1【分析】由幂函数f(x)=x为奇函数,且在(0,+)上递减,得到a是奇数,且a0,由此能求出a的值【解答】解:2,1,1,2,3,幂函数f(x)=x为奇函数,且在(0,+)上递减,a是奇数,且a0,a=1故答案为:1【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题12(5分)(2018上海)在平面直角坐标系中,已知点A(1,0)、B(2,0),E、F是y轴上的两个动点,且| |=2,则的最小值为3【分析】据题意可设E
16、(0,a),F(0,b),从而得出|ab|=2,即a=b+2,或b=a+2,第13页(共24页)并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值【解答】解:根据题意,设E(0,a),F(0,b);a=b+2,或b=a+2;且;当a=b+2时,;b2+2b2的最小值为;的最小值为3,同理求出b=a+2时,的最小值为3故答案为:3【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式13(5分)(2018上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 上海市 高考 数学试题 解析 PDF
