2014年高中数学全国各省市理科导数精选22道大题练习卷与答案(带解析).doc
《2014年高中数学全国各省市理科导数精选22道大题练习卷与答案(带解析).doc》由会员分享,可在线阅读,更多相关《2014年高中数学全国各省市理科导数精选22道大题练习卷与答案(带解析).doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、2014年高中数学全国各省市理科导数精选 22道大题练习卷与答案(带解析) 解答题 已知二次函数 ,关于 x的不等式的解集为 ,其中 m为非零常数 .设 . (1)求 a的值; (2) 如何取值时,函数 存在极值点,并求出极值点; (3)若 m=1,且 x0,求证: 答案:( 1) ( 2)当 时, 取任何实数 , 函数 有极小值点 ; 当 时, ,函数 有极小值点 ,有极大值点 .9 分 (其中 , )( 3)见 设 ,函数 ( 1)若 ,求函数 在区间 上的最大值; ( 2)若 ,写出函数 的单调区间(不必证明); ( 3)若存在 ,使得关于 的方程 有三个不相等的实数解,求实数 的取值范
2、围 答案:( 1) 9( 2)单调递增区间是 和 ,单调递减区间是 ( 3) 已知函数 在 处的切线方程为 . (1)求函数 的式; (2)若关于 的方程 恰有两个不同的实根,求实数 的值; (3)数列 满足 , ,求的整数部分 . 答案:( 1) ( 2) 或者 ( 3) 1 已知向量 , , ( 为常数, 是自然对数的底数),曲线 在点 处的切线与 轴垂直 , ( )求 的值及 的单调区间; ( )已知函数 ( 为正实数 ),若对于任意 ,总存在 , 使得,求实数 的取值范围 答案:( )增区间为 ,减区间为 ( ) 已知函数 ( )若 ,求曲线 在点 处的切线方程; ( )求函数 的单调
3、区间; ( )设函数 若至少存在一个 ,使得 成立,求实数 的取值范围 答案:( ) ( )单调递增区间为 和, 单调递减区间为 ( ) 已知函数 (其中 为常数且 )在 处取得极值 . (I) 当 时,求 的单调区间; (II) 若 在 上的最大值为 ,求 的值 . 答案: (I)单调递增区间为 , 单调递减区间为 (II) 或 已知函数 , ,其中 ( )求 的极值; ( )若存在区间 ,使 和 在区间 上具有相同的单调性,求 的取值范围 答案:( )极小值为 ;没有极大值( ) 已知函数 的图象与 的图象关于直线 对称。 ( )若直线 与 的图像相切 , 求实数 的值; ( )判断曲线
4、与曲线 公共点的个数 . ( )设 ,比较 与 的大小 , 并说明理由 . 答案: ( ) ( )唯一公共点 ( ) 设函数 ( )当 时,求曲线 在 处的切线方程; ( )当 时,求函数 的单调区间; ( )在( )的条件下,设函数 ,若对于 ,使 成立,求实数 的取值范围 . 答案: ( ) ( )函数 的单调递增区间为 ;单调递减区间为( ) 已知函数 , . ( )当 时,求曲线 在点 处的切线方程; ( )当 时,求函数 的单调区间; ( )当 时,函数 在 上的最大值为 ,若存在 ,使得成立,求实数 b的取值范围 . 答案:( ) ( )当 时,递增区间为 , ,递减区间为 当 时
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 年高 数学 全国 各省 理科 导数 精选 22 道大题 练习 答案 解析
