【考研类试卷】考研数学三(线性代数)-试卷3及答案解析.doc
《【考研类试卷】考研数学三(线性代数)-试卷3及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三(线性代数)-试卷3及答案解析.doc(9页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(线性代数)-试卷 3 及答案解析(总分:64.00,做题时间:90 分钟)一、选择题(总题数:10,分数:20.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 1 , 2 是 n 阶矩阵 A 的特征值, 1 , 2 分别是 A 的对应于 1 , 2 的特征向量,则 ( )(分数:2.00)A.当 1 = 2 时, 1 , 2 对应分量必成比例B.当 1 = 2 时, 1 , 2 对应分量不成比例C.当 1 2 时, 1 , 2 对应分量必成比例D.当 1 2 时, 1 , 2 对应分量必不成比例3.已知 1 =1,1,a,4 T ,
2、2 =2,1,5,a T , 3 =a,2,10,1 T 是 4 阶方阵 A 的3 个不同特征值对应的特征向量,则 a 的取值为 ( )(分数:2.00)A.a5B.a4C.a3D.a3 且 a44.设 A,B 为 n 阶矩阵,且 A 与 B 相似,E 为 n 阶单位矩阵,则 ( )(分数:2.00)A.EA=EBB.A 与 B 有相同的特征值和特征向量C.A 与 B 都相似于一个对角矩阵D.对任意常数 t,tEA 与 tEB 相似5.设 A 为 n 阶矩阵,下列命题正确的是 ( )(分数:2.00)A.若 为 A T 的特征向量,那么 为 A 的特征向量B.若 为 A * 的特征向量,那么
3、为 A 的特征向量C.若 为 A 2 的特征向量,那么 为 A 的特征向量D.若 为 2A 的特征向量,那么 为 A 的特征向量6.已知 3 阶矩阵 A 有特征值 1 =1, 2 =2, 3 =3,则 2A * 的特征值是 ( )(分数:2.00)A.1,2,3B.4,6,12C.2,4,6D.8,16,247.已知 A 是 3 阶矩阵,r(A)=1,则 =0 ( )(分数:2.00)A.必是 A 的二重特征值B.至少是 A 的二重特征值C.至多是 A 的二重特征值D.一重、二重、三重特征值都可能8.已知 1 , 2 是方程(EA)X=0 的两个不同的解向量,则下列向量中必是 A 的对应于特征
4、值 的特征向量的是 ( )(分数:2.00)A. 1B. 2C. 1 2D. 1 + 29.设 (分数:2.00)A. 1 =1,2,1 TB. 2 =1,2,1 TC. 3 =2,1,2 TD. 4 =2,1,2 T10.下列矩阵中能相似于对角阵的矩阵是 ( ) (分数:2.00)A.B.C.D.二、填空题(总题数:6,分数:12.00)11.设 A= (分数:2.00)填空项 1:_12.已知2 是 A= (分数:2.00)填空项 1:_13.设 n 阶矩阵 A 的元素全是 1,则 A 的 n 个特征值是 1(分数:2.00)填空项 1:_14.设 A 是 3 阶矩阵,已知A+E=0,A+
5、2E=0,A+3E=0,则A+4E= 1(分数:2.00)填空项 1:_15.设 A 是 3 阶矩阵,A=3且满足A 2 +2A=0,2A 2 +A=0,则 A * 的特征值是 1(分数:2.00)填空项 1:_16.设 A 是 n 阶实对称阵, 1 , 2 , n 是 A 的 n 个互不相同的特征值, 1 是 A 的对应于 1 的一个单位特征向量,则矩阵 B=A 1 1 1 T 的特征值是 1(分数:2.00)填空项 1:_三、解答题(总题数:16,分数:32.00)17.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_18.A 是三阶矩阵, 1 , 2 , 3 是三个不同
6、的特征值, 1 , 2 , 3 是相应的特征向量证明:向量组 A( 1 + 2 ),A( 2 + 3 ),A( 3 + 1 )线性无关的充要条件是 A 是可逆矩阵(分数:2.00)_19.设 A 是三阶实矩阵, 1 , 2 , 3 是 A 的三个不同的特征值, 1 , 2 , 3 是三个对应的特征向量证明:当 2 3 0 时,向量组 1 ,A( 1 + 2 ),A 2 ( 1 + 2 + 3 )线性无关(分数:2.00)_20.设 A 是 n 阶实矩阵,有 A=,A T =,其中 , 是实数,且 , 是 n 维非零向量证明:, 正交(分数:2.00)_21.设矩阵 A= (分数:2.00)_2
7、2.已知 A= (分数:2.00)_23.已知 =1,k,1 T 是 A 1 的特征向量,其中 A= (分数:2.00)_24.设矩阵 A= (分数:2.00)_25.已知 =1,1,1 T 是矩阵 A= (分数:2.00)_26.设矩阵 A= (分数:2.00)_27.设 A 是三阶实对称阵, 1 =1, 2 = 3 =1 是 A 的特征值,对应于 1 的特征向量为 1 =0,1,1 T ,求 A(分数:2.00)_28.设 A 是 n 阶方阵,2,4,2n 是 A 的 n 个特征值,E 是 n 阶单位阵计算行列式A3E的值(分数:2.00)_29.设矩阵 (分数:2.00)_30.设 A
8、为 3 阶矩阵, 1 , 2 , 3 是 A 的三个不同特征值,对应的特征向量为 1 , 2 , 3 ,令 = 1 + 2 + 3 (1)证明:,A,A 2 线性无关; (2)若 A 3 =A,求秩 r(AE)及行列式A+2E(分数:2.00)_31.设 A= (分数:2.00)_32.证明:AB,其中 (分数:2.00)_考研数学三(线性代数)-试卷 3 答案解析(总分:64.00,做题时间:90 分钟)一、选择题(总题数:10,分数:20.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 1 , 2 是 n 阶矩阵 A 的特征值, 1 ,
9、 2 分别是 A 的对应于 1 , 2 的特征向量,则 ( )(分数:2.00)A.当 1 = 2 时, 1 , 2 对应分量必成比例B.当 1 = 2 时, 1 , 2 对应分量不成比例C.当 1 2 时, 1 , 2 对应分量必成比例D.当 1 2 时, 1 , 2 对应分量必不成比例 解析:解析:当 1 = 2 时, 1 与 2 可以线性相关也可以线性无关,所以 1 , 2 可以对应分量成比例,也可以对应分量不成比例,故排除(A),(B)当 1 2 时, 1 , 2 一定线性无关,对应分量一定不成比例,故选(D)3.已知 1 =1,1,a,4 T , 2 =2,1,5,a T , 3 =
10、a,2,10,1 T 是 4 阶方阵 A 的3 个不同特征值对应的特征向量,则 a 的取值为 ( )(分数:2.00)A.a5 B.a4C.a3D.a3 且 a4解析:解析: 1 , 2 , 3 是三个不同特征值的特征向量,必线性无关,由 4.设 A,B 为 n 阶矩阵,且 A 与 B 相似,E 为 n 阶单位矩阵,则 ( )(分数:2.00)A.EA=EBB.A 与 B 有相同的特征值和特征向量C.A 与 B 都相似于一个对角矩阵D.对任意常数 t,tEA 与 tEB 相似 解析:解析:A 与 B 相似,存在可逆矩阵 P,使得 P 1 AP=B,则 tEB=tEP 1 AP=P 1 (tE)
11、PP 1 AP=P 1 (tEA)P, 即 tEA 与 tEB 相似,选(D)对于(A):由 EA=EB,有 A=B;对于(B):A 与 B 相似,则 A 与 B 有相同的特征值,但特征向量不一定相同;对于(C):A 与 B 不一定能够相似对角化5.设 A 为 n 阶矩阵,下列命题正确的是 ( )(分数:2.00)A.若 为 A T 的特征向量,那么 为 A 的特征向量B.若 为 A * 的特征向量,那么 为 A 的特征向量C.若 为 A 2 的特征向量,那么 为 A 的特征向量D.若 为 2A 的特征向量,那么 为 A 的特征向量 解析:解析:矩阵 A T 与 A 的特征值相同,但特征向量不
12、一定相同,故(A)错误 假设 为 A 的特征向量, 为其特征值,当 0 时 也为 A * 的特征向量这是由于 A=A * A=A * =A * = 1 A 但反之, 为 A * 的特征向量,那么 不一定为 A 的特征向量例如:当 r(A)n1 时,A * =O,此时,任意 n 维非零列向量都是 A * 的特征向量,故 A * 的特征向量不一定是 A 的特征向量可知(B)错误 假设 为 A 的特征向量, 为其特征值,则 为 A 2 的特征向量这是由于 A 2 =A(A)=A= 2 但反之,若 为 A 2 的特征向量, 不一定为 A 的特征向量例如:假设 A 1 = 1 ,A 2 = 2 ,其中
13、1 , 2 0此时有 A 2 ( 1 + 2 )=A 2 1 +A 2 2 = 1 + 2 ,可知 1 + 2 为 A 2 的特征向量但 1 , 2 是矩阵 A 两个不同特征值的特征向量,它们的和 1 + 2 不是 A 的特征向量故(C)错误 若 为 2A 的特征向量,则存在实数 使得 2A=,此时有 A= 6.已知 3 阶矩阵 A 有特征值 1 =1, 2 =2, 3 =3,则 2A * 的特征值是 ( )(分数:2.00)A.1,2,3B.4,6,12 C.2,4,6D.8,16,24解析:解析:BA * 的特征值是 2 7.已知 A 是 3 阶矩阵,r(A)=1,则 =0 ( )(分数:
14、2.00)A.必是 A 的二重特征值B.至少是 A 的二重特征值 C.至多是 A 的二重特征值D.一重、二重、三重特征值都可能解析:解析:A 是三阶矩阵,r(A)=1,r(OEA)=1 (OEA)X=0 有两个线性无关特征向量,故 =0 至少是二重特征值,也可能是三重,例如:A=8.已知 1 , 2 是方程(EA)X=0 的两个不同的解向量,则下列向量中必是 A 的对应于特征值 的特征向量的是 ( )(分数:2.00)A. 1B. 2C. 1 2 D. 1 + 2解析:解析:因 1 2 ,故 1 2 0,且仍有关系 A( 1 2 )= 1 2 =( 1 2 ), 故 1 2 是 A 的特征向量
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 答案 解析 DOC
