【考研类试卷】考研数学三(线性代数)-试卷23及答案解析.doc
《【考研类试卷】考研数学三(线性代数)-试卷23及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三(线性代数)-试卷23及答案解析.doc(12页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(线性代数)-试卷 23 及答案解析(总分:86.00,做题时间:90 分钟)一、选择题(总题数:14,分数:28.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.若向量组 1 , 2 , 3 , 4 线性相关,且向量 4 不可由向量组 1 , 2 , 3 线性表示,则下列结论正确的是( )(分数:2.00)A. 1 , 2 , 3 线性无关B. 1 , 2 , 3 线性相关C. 1 , 2 , 4 线性无关D. 1 , 2 , 4 线性相关3.设矩阵 A=( 1 , 2 , 3 , 4 )经行初等变换为矩阵 B=( 1 , 2 , 3 ,
2、 4 ),且 1 , 2 , 3 线性无关, 1 , 2 , 3 , 4 线性相关,则( )(分数:2.00)A. 4 不能由 1 , 2 , 3 线性表示B. 4 能由 1 , 2 , 3 线性表示,但表示法不唯一C. 4 能由 1 , 2 , 3 线性表示,且表示法唯一D. 4 能否由 1 , 2 , 3 线性表示不能确定4.设 A=( 1 , 2 , m ),若对于任意不全为零的常数 k 1 ,k 2 ,k m ,皆有 k 1 1 +k 2 2 +k m m 0,则( )(分数:2.00)A.mnB.m=nC.存在 m 阶可逆阵 P,使得 AP=D.若 AB=O,则 B=O5.下列命题正
3、确的是( )(分数:2.00)A.若向量 1 , 2 , n 线性无关,A 为 n 阶非零矩阵,则 A 1 ,A 2 ,A n 线性无关B.若向量 1 , 2 , n 线性相关,则 1 , 2 , n 中任一向量都可由其余向量线性表示C.若向量 1 , 2 , n 线性无关,则 1 + 2 , 2 + 3 , n + 1 一定线性无关D.设 1 , 2 , n 是 n 个 n 维向量且线性无关,A 为 n 阶非零矩阵,且 A 1 ,A 2 ,A n 线性无关,则 A 一定可逆6.向量组 1 , 2 , m 线性无关的充分必要条件是( )(分数:2.00)A. 1 , 2 , m 中任意两个向量
4、不成比例B. 1 , 2 , m 是两两正交的非零向量组C.设 A=( 1 , 2 , m ),方程组 AX=0 只有零解D. 1 , 2 , m 中向量的个数小于向量的维数7.设 A 是 mn 矩阵,且 mn,下列命题正确的是( )(分数:2.00)A.A 的行向量组一定线性无关B.非齐次线性方程组 Ax=b 一定有无穷多组解C.A T A 一定可逆D.A T A 可逆的充分必要条件是 r(A)=n8.设 A,B 是满足 AB=O 的任意两个非零阵,则必有( )(分数:2.00)A.A 的列向量组线性相关,B 的行向量组线性相关B.A 的列向量组线性相关,B 的列向量组线性相关C.A 的行向
5、量组线性相关,B 的行向量组线性相关D.A 的行向量组线性相关,B 的列向量组线性相关9.设 1 , 2 , m 与 1 , 2 , s 为两个 n 维向量组,且 r( 1 , 2 , m )=r( 1 , 2 , s )=r,则( )(分数:2.00)A.两个向量组等价B.r( 1 , 2 , m , 1 , 2 , s )=rC.若向量组 1 , 2 , m 可由向量组 1 , 2 , s 线性表示,则两向量组等价D.两向量组构成的矩阵等价10.设 A 是 ms 矩阵,B 为 sn 矩阵,则方程组 BX=0 与 ABX=0 同解的充分条件是( )(分数:2.00)A.r(A)=sB.r(A
6、)=mC.r(B)=sD.r(B)=n11.设 n 阶矩阵 A 的伴随矩阵 A * O,且非齐次线性方程组 AX=b 有两个不同解 1 , 2 ,则下列命题正确的是( )(分数:2.00)A.AX=b 的通解为 k 1 1 +k 2 2B. 1 + 2 为 AX=b 的解C.方程组 AX=0 的通解为 k( 1 一 2 )D.AX=b 的通解为 k 1 1 +k 2 2 + 12.设有方程组 AX=0 与 BX=0,其中 A,B 都是 mn 矩阵,下列四个命题: (1)若 AX=0 的解都是 BX=0 的解,则 r(A)r(B) (2)若 r(A)r(B),则 AX=0 的解都是 BX=0 的
7、解 (3)若 AX=0 与 BX=0 同解,则 r(A)=r(B) (4)若 r(A)=r(B),则 AX=0 与 BX=0 同解 以上命题正确的是( )(分数:2.00)A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)13.设 A 是 mn 矩阵,B 是 nm 矩阵,则( )(分数:2.00)A.当 mn 时,线性齐次方程组 ABX=0 有非零解B.当 mn 时,线性齐次方程组 ABX=0 只有零解C.当 nm 时,线性齐次方程组 ABX=0 有非零解D.当 nm 时,线性齐次方程组 ABX=0 只有零解14.设 A 为 mn 阶矩阵,则方程组 AX=b 有唯一解的充分必要条
8、件是( )(分数:2.00)A.r(A)=mB.r(A)=nC.A 为可逆矩阵D.r(A)=n 且 b 可由 A 的列向量组线性表示二、填空题(总题数:3,分数:6.00)15.设 (分数:2.00)填空项 1:_16.设 A= (分数:2.00)填空项 1:_填空项 1:_17.设 为非零向量,A= (分数:2.00)填空项 1:_三、解答题(总题数:26,分数:52.00)18.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_19.设向量组() 1 , 2 , 3 ;() 1 , 2 , 3 , 4 ;() 1 , 2 , 3 , 5 ,若向量组(I)与向量组()的秩为
9、3,而向量组()的秩为 4证明:向量组 1 , 2 , 3 , 5 4 的秩为 4(分数:2.00)_20.设 1 , 2 , n 为 n 个 n 维线性无关的向量,A 是 n 阶矩阵证明:A 1 ,A 2 ,A n 线性无关的充分必要条件是 A 可逆(分数:2.00)_21.设 1 , 2 , n 为 n 个 n 维列向量,证明: 1 , 2 , n 线性无关的充分必要条件是 (分数:2.00)_22.设 1 , 2 , t 为 AX=0 的一个基础解系, 不是 AX=0 的解,证明:,+ 1 ,+ 2 ,+ t 线性无关(分数:2.00)_23.设 1 , 2 , n 为 n 个 n 维向
10、量,证明: 1 , 2 , n 线性无关的充分必要条件是任一 n 维向量总可由 1 , 2 , n 线性表示(分数:2.00)_24.设 A 为 n 阶矩阵,若 A k-1 0,而 A k =0证明:向量组 ,A,A k-1 线性无关(分数:2.00)_25.设 1 , 2 , 1 , 2 为三维列向量组,且 1 , 2 与 1 , 2 都线性无关 (1)证明:至少存在一个非零向量可同时由 1 , 2 和 1 , 2 线性表示; (2)设 (分数:2.00)_26.设向量组 1 , 2 , n-1 为 n 维线性无关的列向量组,且与非零向量 1 , 2 正交证明: 1 , 2 线性相关(分数:
11、2.00)_27.设齐次线性方程组 (分数:2.00)_28.设 A 为三阶矩阵,A 的第一行元素为 a,b,c 且不全为零,又 B= (分数:2.00)_29.a,b 取何值时,方程组 (分数:2.00)_30.A,B 为 n 阶矩阵且 r(A)+r(B)n证明:方程组 AX=0 与 BX=0 有公共的非零解(分数:2.00)_31.设(I) , 1 , 2 , 3 , 4 为四元非齐次线性方程组 BX=b 的四个解,其中 1 = (分数:2.00)_32.设 (分数:2.00)_33.,问 a,b,c 取何值时,(I),()为同解方程组? (分数:2.00)_34. (分数:2.00)_3
12、5. (分数:2.00)_36.设 A 是 ms 矩阵,B 是 sn 矩阵,且 r(B)=r(AB)证明:方程组 BX=0 与 ABX=0 是同解方程组(分数:2.00)_37.设 A,B,C,D 都是 n 阶矩阵,r(CA+DB)=n (1)证明 (分数:2.00)_38.设 A 为 n 阶矩阵,A 11 0证明:非齐次线性方程组 AX=b 有无穷多个解的充分必要条件是 A * b=0(分数:2.00)_39.证明:r(AB)minr(A),r(B)(分数:2.00)_40.证明:r(A)=r(A T A)(分数:2.00)_41.设 A 是 mn 矩阵,且非齐次线性方程组 AX=b 满足
13、r(A)= (分数:2.00)_42.讨论方程组 (分数:2.00)_43.设 A= (分数:2.00)_考研数学三(线性代数)-试卷 23 答案解析(总分:86.00,做题时间:90 分钟)一、选择题(总题数:14,分数:28.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.若向量组 1 , 2 , 3 , 4 线性相关,且向量 4 不可由向量组 1 , 2 , 3 线性表示,则下列结论正确的是( )(分数:2.00)A. 1 , 2 , 3 线性无关B. 1 , 2 , 3 线性相关 C. 1 , 2 , 4 线性无关D. 1 , 2 ,
14、4 线性相关解析:解析:若 1 , 2 , 3 线性无关,因为 4 不可由 1 , 2 , 3 线性表示,所以口1,口 z,口 s,at 线性无关,矛盾,故 1 , 2 , 3 线性相关,选 B3.设矩阵 A=( 1 , 2 , 3 , 4 )经行初等变换为矩阵 B=( 1 , 2 , 3 , 4 ),且 1 , 2 , 3 线性无关, 1 , 2 , 3 , 4 线性相关,则( )(分数:2.00)A. 4 不能由 1 , 2 , 3 线性表示B. 4 能由 1 , 2 , 3 线性表示,但表示法不唯一C. 4 能由 1 , 2 , 3 线性表示,且表示法唯一 D. 4 能否由 1 , 2
15、, 3 线性表示不能确定解析:解析:因为 1 , 2 , 3 线性无关,而 1 , 2 , 3 , 4 线性相关,所以口。可由 1 , 2 , 3 唯一线性表示,又 A=( 1 , 2 , 3 , 4 )经过有限次初等行变换化为B=( 1 , 2 , 3 , 4 ),所以方程组 x 1 1 +x 2 2 +x 3 3 = 4 与 x 1 1 +x 2 2 +x 3 3 = 4 是同解方程组,因为方程组 x 1 1 +x 2 2 +x 3 3 = 4 有唯一解,所以方程组 x 1 1 +x 2 2 +x 3 3 = 4 有唯一解,即 4 可由 1 , 2 , 3 唯一线性表示,选C4.设 A=(
16、 1 , 2 , m ),若对于任意不全为零的常数 k 1 ,k 2 ,k m ,皆有 k 1 1 +k 2 2 +k m m 0,则( )(分数:2.00)A.mnB.m=nC.存在 m 阶可逆阵 P,使得 AP=D.若 AB=O,则 B=O 解析:解析:因为对任意不全为零的常数 k 1 ,k 2 ,k m ,有 k 1 1 +k 2 2 +k m m 0,所以向量组 1 , 2 , m 线性无关,即方程组 Ax=0 只有零解,故若 AB=O,则 B=O 选D5.下列命题正确的是( )(分数:2.00)A.若向量 1 , 2 , n 线性无关,A 为 n 阶非零矩阵,则 A 1 ,A 2 ,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 23 答案 解析 DOC
