【考研类试卷】考研数学一(线性代数)模拟试卷108及答案解析.doc
《【考研类试卷】考研数学一(线性代数)模拟试卷108及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学一(线性代数)模拟试卷108及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学一(线性代数)模拟试卷 108 及答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A 为 mn 阶矩阵,B 为 nm 阶矩阵,且 mn,令 r(AB)=r,则( )(分数:2.00)A.rmB.r=mC.rmD.rm3.若 1 , 2 , 3 线性相关, 2 , 3 , 4 线性无关,则( )(分数:2.00)A. 1 可由 2 , 3 线性表示B. 4 可由 1 , 2 , 3 线性表示C. 4 可由 1 , 3 线性表示D. 4 可由 1 , 2 线
2、性表示4.设向量组(): 1 , 2 , s 的秩为 r 1 ,向量组(): 1 , 2 , s 的秩为 r 2 ,且向量组()可由向量组()线性表示,则( )(分数:2.00)A. 1 + 1 , 2 + 2 , s + s 的秩为 r 1 +r 2B.向量组 1 一 1 , 2 一 2 , s 一 s 的秩为 r 1 一 r 2C.向量组 1 , 2 , s , 1 , 2 , s 的秩为 r 1 +r 2D.向量组 1 , 2 , s , 1 , 2 , s 的秩为 r 15.设 1 , 2 为齐次线性方程组 AX=0 的基础解系, 1 , 2 为非齐次线性方程组 AX=b 的两个不同解
3、,则方程组 Ab 的通解为( )(分数:2.00)A.k 1 1 +k 2 ( 1 一 2 )+ B.k 1 1 +k 2 ( 1 一 2 )+ C.k 1 1 +k 2 ( 1 + 2 )+ D.k 1 1 +k 2 ( 1 + 2 )+ 6.设 A 为 n 阶可逆矩阵, 为 A 的特征值,则 A * 的一个特征值为( )(分数:2.00)A.B.C.AD.A n17.n 阶实对称矩阵 A 正定的充分必要条件是( )(分数:2.00)A.A 无负特征值B.A 是满秩矩阵C.A 的每个特征值都是单值D.A 1 是正定矩阵8.设 A,B 为三阶矩阵,且特征值均为一 2,1,1,以下命题中正确的命
4、题个数为( )(1)AB;(2)A,B合同;(3)A,B 等价;(4)A=B(分数:2.00)A.1 个B.2 个C.3 个D.4 个二、填空题(总题数:6,分数:12.00)9.设 f(x)= (分数:2.00)填空项 1:_10.设 A 是三阶矩阵,且A=4,则( (分数:2.00)填空项 1:_11.设 A= (分数:2.00)填空项 1:_12. (分数:2.00)填空项 1:_13.设 1 , 2 , 3 是四元非齐次线性方程组 AX=b 的三个解向量,r(A)=3,且 1 + 2 = , 2 + 3 = (分数:2.00)填空项 1:_14.设 = (分数:2.00)填空项 1:_
5、三、解答题(总题数:13,分数:30.00)15.解答题解答应写出文字说明、证明过程或演算步骤。_16.计算行列式 (分数:2.00)_17.设 A= (分数:2.00)_18.设 A 为 n 阶矩阵,且 A 2 一 2A 一 8E=O证明:r(4EA)+r(2E+A)=n(分数:2.00)_19.证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关(分数:2.00)_20.设三维向量空间的两组基 ,向量 在基 1 , 2 , 3 下的坐标为 (分数:2.00)_设 A 是 34 阶矩阵且 r(A)=1,设(1,一 2,1,2) T ,(1,0,5,2) T ,(一 1,2,0
6、,1) T ,(2,一4,3,a+1) T 皆为 AX=0 的解(分数:4.00)(1).求常数 a;(分数:2.00)_(2).求方程组 AX=0 的通解(分数:2.00)_21.四元非齐次线性方程组 AX=b 有三个解向量 1 , 2 , 3 且 r(A)=3,设 1 + 2 = , 2 + 3 = (分数:2.00)_22.设 A= (分数:2.00)_23.设 A 是 n 阶矩阵, 是 A 的特征值,其对应的特征向量为 X,证明: 2 是 A 2 的特征值,X 为特征向量,若 A 2 有特征值 ,其对应的特征向量为 X,X 是否一定为 A 的特征向量?说明理由(分数:2.00)_设 A
7、,B 为 n 阶矩阵(分数:4.00)(1).是否有 ABBA;(分数:2.00)_(2).若 A 有特征值 1,2,n,证明:ABBA(分数:2.00)_24.设 (分数:2.00)_设二次型 f(x 1 ,x 2 ,x 3 )=X T AX,tr(A)=1,又 B= (分数:4.00)(1).求正交矩阵 Q,使得在正交变换 x=QY 下二次型化为标准形(分数:2.00)_(2).求矩阵 A(分数:2.00)_考研数学一(线性代数)模拟试卷 108 答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合
8、题目要求。(分数:2.00)_解析:2.设 A 为 mn 阶矩阵,B 为 nm 阶矩阵,且 mn,令 r(AB)=r,则( )(分数:2.00)A.rmB.r=mC.rm D.rm解析:解析:显然 AB 为 m 阶矩阵,r(A)n,r(B)n,而 r(AB)minr(A),r(B)nm,所以选(C)3.若 1 , 2 , 3 线性相关, 2 , 3 , 4 线性无关,则( )(分数:2.00)A. 1 可由 2 , 3 线性表示 B. 4 可由 1 , 2 , 3 线性表示C. 4 可由 1 , 3 线性表示D. 4 可由 1 , 2 线性表示解析:解析:因为 2 , 3 , 4 线性无关,所
9、以 2 , 3 线性无关,又因为 1 , 2 , 3 线性相关,所以 1 可由 2 , 3 线性表示,选(A)4.设向量组(): 1 , 2 , s 的秩为 r 1 ,向量组(): 1 , 2 , s 的秩为 r 2 ,且向量组()可由向量组()线性表示,则( )(分数:2.00)A. 1 + 1 , 2 + 2 , s + s 的秩为 r 1 +r 2B.向量组 1 一 1 , 2 一 2 , s 一 s 的秩为 r 1 一 r 2C.向量组 1 , 2 , s , 1 , 2 , s 的秩为 r 1 +r 2D.向量组 1 , 2 , s , 1 , 2 , s 的秩为 r 1 解析:解析
10、:因为向量组 1 , 2 , s 可由向量组 1 , 2 , s 线性表示,所以向量组 1 , 2 , s 与向量组 1 , 2 , s , 1 , 2 , s 等价,选(D)5.设 1 , 2 为齐次线性方程组 AX=0 的基础解系, 1 , 2 为非齐次线性方程组 AX=b 的两个不同解,则方程组 Ab 的通解为( )(分数:2.00)A.k 1 1 +k 2 ( 1 一 2 )+ B.k 1 1 +k 2 ( 1 一 2 )+ C.k 1 1 +k 2 ( 1 + 2 )+ D.k 1 1 +k 2 ( 1 + 2 )+ 解析:解析:选(D),因为 1 , 1 + 2 为方程组 AX=0
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 模拟 108 答案 解析 DOC
