【考研类试卷】考研数学一(线性代数)模拟试卷107及答案解析.doc
《【考研类试卷】考研数学一(线性代数)模拟试卷107及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学一(线性代数)模拟试卷107及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学一(线性代数)模拟试卷 107 及答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A,B 为两个 n 阶矩阵,下列结论正确的是( )(分数:2.00)A.|A+B|=|A|+|B|B.若|AB|=0,则 A=0 或 B=0C.|AB|=|A|B|D.|AB|=|A|B|3.设 A 为 n 阶矩阵,k 为常数,则(kA) * 等于( )(分数:2.00)A.kA *B.k n A *C.k n1 A *D.k n(n1) A *4.设 P= (分数:2.0
2、0)A.当 t=6 时,r(Q)=1B.当 t=6 时,r(Q)=2C.当 t6 时,r(Q)=1D.当 t6 时,r(Q)=25.若向量组 1 , 2 , 3 , 4 线性相关,且向量 4 不可由向量组 1 , 2 , 3 线性表示,则下列结论正确的是( )(分数:2.00)A. 1 , 2 , 3 线性无关B. 1 , 2 , 3 线性相关C. 1 , 2 , 4 线性无关D. 1 , 2 , 4 线性相关6.设 A 是 mn 矩阵,且 mn,下列命题正确的是( )(分数:2.00)A.A 的行向量组一定线性无关B.非齐次线性方程组 AX=b 一定有无穷多组解C.A T A 一定可逆D.A
3、TA 可逆的充分必要条件是 r(A)=n7.若 AX=0 的解都是 BX=0 的解,则 r(A)r(B)(2)若 r(A)r(B),则 AX=0 的解都是 BX=0 的解(3)若 AX=0与 BX=0 同解,则 r(A)=r(B)(14)若 r(A)=r(B),则 AX=0 与 BX=0 同解以上命题正确的是( )(分数:2.00)A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)8.设三阶矩阵 A 的特征值为1,1,2,其对应的特征向量为 1 , 2 , 3 ,令 P=(3 2 , 3 ,2 1 ),则 P 1 AP 等于( ) (分数:2.00)A.B.C.D.9.设 A,B
4、 为 n 阶可逆矩阵,则( )(分数:2.00)A.存在可逆矩阵 P,使得 P 1 AP=BB.存在正交矩阵 Q,使得 Q T AQ=BC.A,B 与同一个对角矩阵相似D.存在可逆矩阵 P,Q,使得 PAQ=B二、填空题(总题数:3,分数:6.00)10.设 A= (分数:2.00)填空项 1:_11.设 1 , 2 , 3 是三阶矩阵 A 的三个不同特征值, 1 , 2 , 3 分别是属于特征值 1 , 2 , 3 的特征向量,若 1 ,A( 1 + 2 ),A 2 ( 1 + 2 + 3 )线性无关,则 1 , 2 , 3 满足 1(分数:2.00)填空项 1:_12.f(x 1 ,x 2
5、 ,x 3 ,x 4 )=X T AX 的正惯性指数是 2,且 A 2 2A=O,该二次型的规范形为 1(分数:2.00)填空项 1:_三、解答题(总题数:15,分数:34.00)13.解答题解答应写出文字说明、证明过程或演算步骤。_14.计算 (分数:2.00)_15.设 A 为 n 阶矩阵,证明:r(A)=1 的充分必要条件是存在 n 维非零列向量 ,使得 A= T (分数:2.00)_16.设 1 , 2 , n 为 n 个 n 维列向量,证明: 1 , 2 , n 线性无关的充分必要条件是 (分数:2.00)_17.设 A 为三阶矩阵,A 的第一行元素为 a,b,c 且不全为零,又 B
6、= (分数:2.00)_18.问 a,b,c 取何值时,(),()为同解方程组? (分数:2.00)_19.证明线性方程组 有解的充分必要条件是方程组 (分数:2.00)_20.讨论方程组 (分数:2.00)_设 A= (分数:4.00)(1).a 及可逆阵 P,使得 P 1 AP=A,其中 A 为对角阵;(分数:2.00)_(2).A 100 (分数:2.00)_21.设 A= (分数:2.00)_设 A= 的一个特征值为 1 =2,其对应的特征向量为 1 = (分数:4.00)(1).求常数 a,b,c;(分数:2.00)_(2).判断 A 是否可对角化,若可对角化,求可逆矩阵 P,使得
7、P 1 AP 为对角矩阵若不可对角化,说明理由(分数:2.00)_设 A 为三阶实对称矩阵,A 的每行元素之和为 5,AX=0 有非零解且 1 =2 是 A 的特征值,对应特征向量为(1,0,1) T (分数:4.00)(1).求 A 的其他特征值与特征向量;(分数:2.00)_(2).求 A(分数:2.00)_22.设 A,B 为 n 阶矩阵,且 r(A)+r(B)n证明:A,B 有公共的特征向量(分数:2.00)_23.设 P 为可逆矩阵,A=P T P证明:A 是正定矩阵(分数:2.00)_24.设 A 为实对称矩阵,且 A 的特征值都大于零证明:A 为正定矩阵(分数:2.00)_考研数
8、学一(线性代数)模拟试卷 107 答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 A,B 为两个 n 阶矩阵,下列结论正确的是( )(分数:2.00)A.|A+B|=|A|+|B|B.若|AB|=0,则 A=0 或 B=0C.|AB|=|A|B|D.|AB|=|A|B| 解析:解析:(A)、(C)显然不对,设 A=3.设 A 为 n 阶矩阵,k 为常数,则(kA) * 等于( )(分数:2.00)A.kA *B.k n A *C.k n1 A * D.k
9、n(n1) A *解析:解析:因为(kA) * 的每个元素都是 kA 的代数余子式,而余子式为 n1 阶子式,所以(kA) * =k n1 A * ,选(C)4.设 P= (分数:2.00)A.当 t=6 时,r(Q)=1B.当 t=6 时,r(Q)=2C.当 t6 时,r(Q)=1 D.当 t6 时,r(Q)=2解析:解析:因为 QO,所以 r(Q)1,又由 PQ=O 得 r(P)+r(Q)3,当 t6 时,r(P)2,则 r(Q)1,于是 r(Q)=1,选(C)5.若向量组 1 , 2 , 3 , 4 线性相关,且向量 4 不可由向量组 1 , 2 , 3 线性表示,则下列结论正确的是(
10、)(分数:2.00)A. 1 , 2 , 3 线性无关B. 1 , 2 , 3 线性相关 C. 1 , 2 , 4 线性无关D. 1 , 2 , 4 线性相关解析:解析:若 1 , 2 , 3 线性无关,因为 4 不可由 1 , 2 , 3 线性表示,所以 1 , 2 , 3 , 4 线性无关,矛盾,故 1 , 2 , 3 线性相关,选(B)6.设 A 是 mn 矩阵,且 mn,下列命题正确的是( )(分数:2.00)A.A 的行向量组一定线性无关B.非齐次线性方程组 AX=b 一定有无穷多组解C.A T A 一定可逆D.ATA 可逆的充分必要条件是 r(A)=n 解析:解析:若 A T A
11、可逆,则 r(A T A)=n,因为 r(A T A)=r(A),所以 r(A)=n;反之,若 r(A)=n,因为r(A T A)=r(A),所以 A T A 可逆,选(D)7.若 AX=0 的解都是 BX=0 的解,则 r(A)r(B)(2)若 r(A)r(B),则 AX=0 的解都是 BX=0 的解(3)若 AX=0与 BX=0 同解,则 r(A)=r(B)(14)若 r(A)=r(B),则 AX=0 与 BX=0 同解以上命题正确的是( )(分数:2.00)A.(1)(2)B.(1)(3) C.(2)(4)D.(3)(4)解析:解析:若方程组 AX=0 的解都是方程组 BX=0 的解,则
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 模拟 107 答案 解析 DOC
