【考研类试卷】考研数学一(线性代数)-试卷3及答案解析.doc
《【考研类试卷】考研数学一(线性代数)-试卷3及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学一(线性代数)-试卷3及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学一(线性代数)-试卷 3 及答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 n 维列向量组 1 , 2 , m (mn)线性无关,则 n 维列向量组 1 , 2 , m 线性无关的充分必要条件为 ( )(分数:2.00)A.向量组 1 , 2 , m 可由向量组 1 , 2 , m 线性表出B.向量组 1 , 2 , m 可由向量组 1 , 2 , m 线性表出C.向量组 1 , 2 , m 与向量组 1 , 2 , m 等价D.矩阵 A= 1 , 2
2、, m 与矩阵 B= 1 , 2 , m 等价3.要使 都是线性方程组 AX=0 的解,只要系数矩阵 A 为 ( ) (分数:2.00)A.B.C.D.4.齐次线性方程组 (分数:2.00)A.=-2 且B=0B.=-2 且B0C.=1 且B=0D.=1 且B05.齐次线性方程组的系数矩阵 A 45 = 1 , 2 , 3 , 4 , 5 经过初等行变换化成阶梯形矩阵为 (分数:2.00)A. 1 不能由 3 , 4 , 5 线性表出B. 2 不能由 1 , 3 , 5 线性表出C. 3 不能由 1 , 2 , 5 线性表出D. 4 不能由 1 , 2 , 3 线性表出6.设 A 为 mn 矩
3、阵,齐次线性方程组 AX=0 仅有零解的充分条件是 ( )(分数:2.00)A.A 的列向量线性无关B.A 的列向量线性相关C.A 的行向量线性无关D.A 的行向量线性相关7.设 A 为 n 阶实矩阵,则对线性方程组()AX=0 和()A T AX=0,必有 ( )(分数:2.00)A.()的解是()的解,()的解也是()的解B.()的解是()的解,但()的解不是()的解C.()的解不是()的解,()的解也不是()的解D.()的解是()的解,但()的解不是()的解8.已知 1 , 2 是 AX=b 的两个不同的解, 1 , 2 是相应的齐次方程组 AX=0 的基础解系,k 1 ,k 2 是任意
4、常数,则 AX=b 的通解是 ( ) (分数:2.00)A.B.C.D.二、填空题(总题数:5,分数:10.00)9.方程组 x 1 +x 2 +x 3 +x 4 +x 5 =0 的基础解系是 1(分数:2.00)填空项 1:_10.方程组 (分数:2.00)填空项 1:_11.方程组 (分数:2.00)填空项 1:_12.设线性方程组 有解,则方程组右端 (分数:2.00)填空项 1:_13.已知非齐次线性方程组 A 34 X=b 有通解 k 1 1,2,0,-2 T +k 2 4,-1,-1,-1 T +1,0,-1,1 T ,则满足方程组且满足条件 x 1 =x 2 ,x 3 =x 4
5、的解是 1(分数:2.00)填空项 1:_三、解答题(总题数:15,分数:32.00)14.解答题解答应写出文字说明、证明过程或演算步骤。_15.已知 1 =-3,2,0 T , 2 =-1,0,-2 T 是线性方程组 (分数:2.00)_已知线性方程组 (分数:4.00)(1). 4 能否由 1 , 2 , 3 , 5 线性表出,说明理由;(分数:2.00)_(2). 4 能否由 1 , 2 , 3 线性表出,说明理由(分数:2.00)_16.已知 4 阶方阵 A= 1 , 2 , 3 , 4 , 1 , 2 , 3 , 4 均为 4 维列向量,其中 2 , 3 , 4 线性无关, 1 =2
6、 2 - 3 ,如果 = 1 + 2 + 3 , 4 ,求线性方程组AX= 的通解(分数:2.00)_17.设 A mn ,r(A)=m,B n(n-m) ,r(B)=n-m,且满足关系 AB=O证明:若 是齐次线性方程组 Ax=0 的解,则必存在唯一的 ,使得 B=(分数:2.00)_18.设三元非齐次线性方程组的系数矩阵 A 的秩为 1,已知 1 , 2 , 3 是它的三个解向量,且 1 + 2 =1,2,3 T , 2 + 3 =2,-1,1 T , 3 + 1 =0,2,0 T ,求该非齐次方程的通解(分数:2.00)_19.设三元线性方程组有通解 (分数:2.00)_20.已知方程组
7、() (分数:2.00)_21.已知方程组 与方程组 (分数:2.00)_22.设有 4 阶方阵 A 满足条件3E+A=0,AA T =2E,A0,其中 E 是 4 阶单位阵求方阵 A 的伴随矩阵 A * 的一个特征值(分数:2.00)_23.设 A 为 n 阶矩阵, 1 和 2 是 A 的两个不同的特征值x 1 ,x 2 是分别属于 1 和 2 的特征向量证明:x 1 +x 2 不是 A 的特征向量(分数:2.00)_已知矩阵 A= (分数:4.00)(1).求 x 与 y;(分数:2.00)_(2).求一个满足 P -1 AP=B 的可逆矩阵 P(分数:2.00)_24.已知 B 是 n
8、阶矩阵,满足 B 2 =E(此时矩阵 B 称为对合矩阵)求 B 的特征值的取值范围(分数:2.00)_25.设 A,B 是 n 阶方阵,证明:AB,BA 有相同的特征值(分数:2.00)_26.已知 n 阶矩阵 A 的每行元素之和为 a,求 A 的一个特征值,当 k 是自然数时,求 A k 的每行元素之和(分数:2.00)_考研数学一(线性代数)-试卷 3 答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 n 维列向量组 1 , 2 , m (mn)线性无关
9、,则 n 维列向量组 1 , 2 , m 线性无关的充分必要条件为 ( )(分数:2.00)A.向量组 1 , 2 , m 可由向量组 1 , 2 , m 线性表出B.向量组 1 , 2 , m 可由向量组 1 , 2 , m 线性表出C.向量组 1 , 2 , m 与向量组 1 , 2 , m 等价D.矩阵 A= 1 , 2 , m 与矩阵 B= 1 , 2 , m 等价 解析:解析:A= 1 , 2 , m ,= 1 , 2 , n 等价 r( 1 , m )=r( 1 , m ) 3.要使 都是线性方程组 AX=0 的解,只要系数矩阵 A 为 ( ) (分数:2.00)A. B.C.D.
10、解析:解析:因2,1,1 1 =0,-2,1,1 2 =04.齐次线性方程组 (分数:2.00)A.=-2 且B=0B.=-2 且B0C.=1 且B=0 D.=1 且B0解析:解析:BO,AB=O,故 AX=0 有非零解,A=0,5.齐次线性方程组的系数矩阵 A 45 = 1 , 2 , 3 , 4 , 5 经过初等行变换化成阶梯形矩阵为 (分数:2.00)A. 1 不能由 3 , 4 , 5 线性表出B. 2 不能由 1 , 3 , 5 线性表出C. 3 不能由 1 , 2 , 5 线性表出D. 4 不能由 1 , 2 , 3 线性表出 解析:解析: i 能否由其他向量线性表出,只须将 i
11、视为是非齐次方程的右端自由项(无论它原在什么位置)有关向量留在左端,去除无关向量,看该非齐次方程是否有解即可由阶梯形矩阵知, 4 不能由 1 , 2 , 3 线性表出6.设 A 为 mn 矩阵,齐次线性方程组 AX=0 仅有零解的充分条件是 ( )(分数:2.00)A.A 的列向量线性无关 B.A 的列向量线性相关C.A 的行向量线性无关D.A 的行向量线性相关解析:解析:A 的列向量线性无关7.设 A 为 n 阶实矩阵,则对线性方程组()AX=0 和()A T AX=0,必有 ( )(分数:2.00)A.()的解是()的解,()的解也是()的解 B.()的解是()的解,但()的解不是()的解
12、C.()的解不是()的解,()的解也不是()的解D.()的解是()的解,但()的解不是()的解解析:解析:方程 AX=0 和 A T AX=0 是同解方程组8.已知 1 , 2 是 AX=b 的两个不同的解, 1 , 2 是相应的齐次方程组 AX=0 的基础解系,k 1 ,k 2 是任意常数,则 AX=b 的通解是 ( ) (分数:2.00)A.B. C.D.解析:解析:(A),(C)中没有非齐次特解,(D)中两个齐次解 1 与 1 - 2 是否线性无关未知,而(B)中因 1 , 2 是基础解系,故 1 , 1 - 2 仍是基础解系, 二、填空题(总题数:5,分数:10.00)9.方程组 x
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 答案 解析 DOC
