(新课标)天津市2019年高考数学二轮复习专题能力训练7导数与函数的单调性、极值、最值理.doc
《(新课标)天津市2019年高考数学二轮复习专题能力训练7导数与函数的单调性、极值、最值理.doc》由会员分享,可在线阅读,更多相关《(新课标)天津市2019年高考数学二轮复习专题能力训练7导数与函数的单调性、极值、最值理.doc(13页珍藏版)》请在麦多课文档分享上搜索。
1、1专题能力训练 7 导数与函数的单调性、极值、最值一、能力突破训练1.已知函数 f(x)的导函数为 f(x),且满足 f(x)=af(1)x+ln x,若 f =0,则 a=( )(12)A.-1 B.-2 C.1 D.2w3.若定义在 R上的函数 f(x)满足 f(0)=-1,其导函数 f(x)满足 f(x)k1,则下列结论中一定错误的是 ( )A.f B.f(1) 1-12C.f D.f(1-1) -14.已知常数 a,b,c都是实数, f(x)=ax3+bx2+cx-34的导函数为 f(x),f(x)0 的解集为 x|-2 x3 .若 f(x)的极小值等于 -115,则 a的值是( )A
2、.- B.8122 13C.2 D.55.(2018全国 ,理 14)曲线 y=(ax+1)ex在点(0,1)处的切线的斜率为 -2,则 a= . 6.在曲线 y=x3+3x2+6x-1的切线中,斜率最小的切线方程为 . 7.设函数 f(x)=aex+ +b(a0).1(1)求 f(x)在0, + )上的最小值;(2)设曲线 y=f(x)在点(2, f(2)处的切线方程为 y= x,求 a,b的值 .328.设函数 f(x)=xea-x+bx,曲线 y=f(x)在点(2, f(2)处的切线方程为 y=(e-1)x+4.(1)求 a,b的值;(2)求 f(x)的单调区间 .9.(2018全国 ,
3、理 21)已知函数 f(x)= -x+aln x.1(1)讨论 f(x)的单调性;3(2)若 f(x)存在两个极值点 x1,x2,证明: 0.13 1-2(1)求函数 f(x)的单调区间;(2)若函数 f(x)在区间( -2,0)内恰有两个零点,求 a的取值范围;(3)当 a=1时,设函数 f(x)在区间 t,t+3上的最大值为 M(t),最小值为 m(t),记 g(t)=M(t)-m(t),求函数 g(t)在区间 -3,-1上的最小值 .二、思维提升训练11.已知定义在 R上的函数 f(x)的导函数为 f(x),对任意 xR 满足 f(x)+f(x)e3f(3) B.e2f(2)0时,若 f
4、(x) 恒成立,求整数 k的最大值 .+1414.已知函数 f(x)=ln x- ax2+x,aR .12(1)若 f(1)=0,求函数 f(x)的单调递减区间;(2)若关于 x的不等式 f(x) ax-1恒成立,求整数 a的最小值;(3)若 a=-2,正实数 x1,x2满足 f(x1)+f(x2)+x1x2=0,求证: x1+x2 .5-1215.已知函数 f(x)=x2+2cos x,g(x)=ex(cos x-sin x+2x-2),其中 e2 .718 28是自然对数的底数 .(1)求曲线 y=f(x)在点(, f()处的切线方程 .(2)令 h(x)=g(x)-af(x)(aR),讨
5、论 h(x)的单调性并判断有无极值,有极值时求出极值 .5专题能力训练 7 导数与函数的单调性、极值、最值一、能力突破训练1.D 解析 因为 f(x)=af(1)+ ,所以 f(1)=af(1)+1,易知 a1,则 f(1)= ,所以 f(x)=1 11-又因为 f =0,所以 +2=0,解得 a=2.故选 D.1-+1. (12) 1-2.D 解析 设导函数 y=f(x)的三个零点分别为 x1,x2,x3,且 x10,f(x)是增函数,所以函数 y=f(x)的图象可能为 D,故选 D.3.C 解析 构造函数 F(x)=f(x)-kx,则 F(x)=f(x)-k0, 函数 F(x)在 R上为单
6、调递增函数 .0,F F(0). 1-1 ( 1-1)F (0)=f(0)=-1,f -1,(1-1) -1即 f -1= ,f ,故 C错误 .(1-1) -1 1-1 ( 1-1) 1-14.C 解析 依题意得 f(x)=3ax2+2bx+c0 的解集是 -2,3,于是有 3a0,-2+3=- ,-23= ,则23 3b=- ,c=-18a.32函数 f(x)在 x=3处取得极小值,于是有 f(3)=27a+9b+3c-34=-115,则 - a=-81,解得 a=2.故选 C.8125.-3 解析 设 f(x)=(ax+1)ex,可得 f(x)=aex+(ax+1)ex=(ax+a+1)
7、ex,f (x)=(ax+1)ex在(0,1)处的切线斜率 k=f(0)=a+1=-2,a=- 3.6.3x-y-2=0 解析 y=3x2+6x+6=3(x+1)2+33 .当 x=-1时, ymin=3;当 x=-1时, y=-5.6故切线方程为 y+5=3(x+1),即 3x-y-2=0.7.解 (1) f(x)=aex-1.当 f(x)0,即 x-ln a时, f(x)在区间( -ln a,+ )内单调递增;当 f(x)0,f(x)在区间(0, -ln a)内单调递减,在区间( -ln a,+ )内单调递增,从而 f(x)在区间0, + )内的最小值为 f(-ln a)=2+b; 当 a
8、1 时, -ln a0, f(x)在区间0, + )内单调递增,从而 f(x)在区间0, + )内的最小值为 f(0)=a+ +b.1(2)依题意 f(2)=ae2- ,解得 ae2=2或 ae2=- (舍去) .12=32 12所以 a= ,代入原函数可得 2+ +b=3,即 b= 故 a= ,b=22 12 12. 22 12.8.解 (1)因为 f(x)=xea-x+bx,所以 f(x)=(1-x)ea-x+b.依题设, 解得 a=2,b=e.(2)=2+2,(2)=-1,即 2-2+2=2+2,-2+=-1,(2)由(1)知 f(x)=xe2-x+ex.由 f(x)=e2-x(1-x+
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 天津市 2019 年高 数学 二轮 复习 专题 能力 训练 导数 函数 调性 极值 最值理 DOC
