(浙江专用)2020版高考数学新增分大一轮复习第一章集合与常用逻辑用语1.2常用逻辑用语课件.pptx
《(浙江专用)2020版高考数学新增分大一轮复习第一章集合与常用逻辑用语1.2常用逻辑用语课件.pptx》由会员分享,可在线阅读,更多相关《(浙江专用)2020版高考数学新增分大一轮复习第一章集合与常用逻辑用语1.2常用逻辑用语课件.pptx(58页珍藏版)》请在麦多课文档分享上搜索。
1、1.2 常用逻辑用语,第一章 集合与常用逻辑用语,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.命题 用语言、符号或式子表达的,可以 的陈述句叫做命题,其中的语句叫做真命题, 的语句叫做假命题.,判断真假,判断为真,判断为假,知识梳理,ZHISHISHULI,2.四种命题及其相互关系 (1)四种命题间的相互关系,若q,则p,若綈p ,则綈q,若綈q ,则綈p,(2)四种命题的真假关系 两个命题互为逆否命题,它们具有 的真假性; 两个命题为互逆命题或互否命题,它们的真假性 .,相同,没有关系,3.充分条件、必
2、要条件与充要条件的概念,充分,必要,充分不必要,必要不充分,充要,既不充分也不必要,若条件p,q以集合的形式出现,即Ax|p(x),Bx|q(x),则由AB可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.,提示 若A B,则p是q的充分不必要条件; 若AB,则p是q的必要条件; 若AB,则p是q的必要不充分条件; 若AB,则p是q的充要条件; 若AB且AB,则p是q的既不充分也不必要条件.,【概念方法微思考】,题组一 思考辨析,1.判断下列结论是否正确(请在括号中打“”或“”) (1)“对顶角相等”是命题.( ) (2)命题“若p,则q”的否命题是“若p,则綈q”.(
3、 ) (3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( ) (4)当q是p的必要条件时,p是q的充分条件.( ) (5)当p是q的充要条件时,也可说成q成立当且仅当p成立.( ) (6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.( ),基础自测,JICHUZICE,1,2,3,4,5,6,题组二 教材改编,2.P8T3下列命题是真命题的是 A.矩形的对角线相等 B.若ab,cd,则acbd C.若整数a是素数,则a是奇数 D.命题“若x20,则x1”的逆否命题,1,2,3,4,5,6,3.P12练习T2(2)“x30”是“(x3)(x4)0”的_条件.
4、(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”),充分不必要,1,2,3,4,5,6,4.命题“若x2y2,则xy”的逆否命题是 A.若xy,则x2y2 D.若xy,则x2y2,1,2,3,4,5,6,题组三 易错自纠,解析 根据原命题和其逆否命题的条件和结论的关系, 得命题“若x2y2,则xy”的逆否命题是“若xy,则x2y2”.,5.(2013浙江)已知函数f(x)Acos(x)(A0,0,R),则“f(x)是奇函数”是“ ”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件,又f(x)Acos(x)是奇函数f(0)0,1,2,3,4,5,
5、6,6.已知集合A ,Bx|1xm1,xR,若xB成立的一个充分不必要条件是xA,则实数m的取值范围是_.,(2,),1,2,3,4,5,6,xB成立的一个充分不必要条件是xA, AB,m13,即m2.,2,题型分类 深度剖析,PART TWO,题型一 命题及其关系,自主演练,2.某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是 A.不拥有的人们会幸福 B.幸福的人们不都拥有 C.拥有的人们不幸福 D.不拥有的人们不幸福,3.(2019温州模拟)下列命题: “若a21,则ax22axa30的解集为R”的逆否命题; “若 x(x0)为有理数,则x为无理数”的逆否命题. 其中正确的命题是
6、A. B. C. D.,解析 对于,否命题为“若a2b2,则ab”,为假命题; 对于,逆命题为“面积相等的三角形是全等三角形”,为假命题; 对于,当a1时,12a0,原命题正确,从而其逆否命题正确,故正确; 对于,原命题正确,从而其逆否命题正确,故正确. 故选A.,4.设mR,命题“若m0,则方程x2xm0有实根”的逆否命题是_.,若方程x2xm0没有实根,则m0,(1)写一个命题的其他三种命题时,需注意: 对于不是“若p,则q”形式的命题,需先改写; 若命题有大前提,写其他三种命题时需保留大前提. (2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可. (3)根
7、据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.,题型二 充分条件、必要条件的判定,例1 (1)(2018浙江)已知平面,直线m,n满足m,n,则“mn”是“m”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件,师生共研,解析 若m,n,且mn,则一定有m, 但若m,n,且m,则m与n有可能异面, “mn”是“m”的充分不必要条件. 故选A.,(2)已知条件p:x1或xx2,则綈p是綈q的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件,解析 由5x6x
8、2,得2x3,即q:2x3. 所以qp,pq,所以綈p綈q,綈q綈p, 所以綈p是綈q的充分不必要条件,故选A.,充分条件、必要条件的三种判定方法 (1)定义法:根据pq,qp进行判断,适用于定义、定理判断性问题. (2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题. (3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.,跟踪训练1 (1)王安石在游褒禅山记中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪
9、,非常之观”的 A.充要条件 B.既不充分也不必要条件 C.充分不必要条件 D.必要不充分条件,解析 非有志者不能至,是必要条件; 但“有志”也不一定“能至”,不是充分条件.,(2)(2017浙江)已知等差数列an的公差为d,前n项和为Sn,则“d0”是“S4S62S5”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件,解析 S4S62S5S4S4a5a62(S4a5)a6a5a5da5d0, “d0”是“S4S62S5”的充要条件.,题型三 充分条件、必要条件的应用,例2 已知Px|x28x200,非空集合Sx|1mx1m.若“xP”是“xS”的必要条件,求
10、m的取值范围.,师生共研,解 由x28x200,得2x10, 所以Px|2x10, 由“xP”是“xS”的必要条件,知SP. 又因为集合S非空,,所以当0m3时,“xP”是“xS”的必要条件, 即所求m的取值范围是0,3.,1.若本例条件不变,问是否存在实数m,使“xP”是“xS”的充要条件.,解 若xP是xS的充要条件,则PS,,即不存在实数m,使“xP”是“xS”的充要条件.,2.本例条件不变,若“xRP”是“xRS”的必要不充分条件,求实数m的取值范围.,解 由本例知Px|2x10, 因为“xRP”是“xRS”的必要不充分条件, 所以PS. 即2,101m,1m.,所以m9,即m的取值范
11、围是9,).,充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.,跟踪训练2 (1)若“x2x60”是“xa”的必要不充分条件,则实数a的最小值为_.,3,解析 由x2x60,解得x2或x3. 因为“x2x60”是“xa”的必要不充分条件, 所以x|xa是x|x2或x3的真子集,即a3, 故实数a的最小值为3.,3或4,解析 由164n0,得n4, 又nN*,则n1,2,3,4. 当n1,2时,方程没有整数根; 当n3时,方
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 专用 2020 高考 数学 新增 一轮 复习 第一章 集合 常用 逻辑 用语 12 课件 PPTX

链接地址:http://www.mydoc123.com/p-1116723.html