ITU-R P 834-7-2015 Effects of tropospheric refraction on radiowave propagation《对流层折射对无线电波传播的影响》.pdf
《ITU-R P 834-7-2015 Effects of tropospheric refraction on radiowave propagation《对流层折射对无线电波传播的影响》.pdf》由会员分享,可在线阅读,更多相关《ITU-R P 834-7-2015 Effects of tropospheric refraction on radiowave propagation《对流层折射对无线电波传播的影响》.pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、 Recommendation ITU-R P.834-7 (10/2015) Effects of tropospheric refraction on radiowave propagation P Series Radiowave propagation ii Rec. ITU-R P.834-7 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectr
2、um by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication C
3、onferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statemen
4、ts and licensing declarations by patent holders are available from http:/www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also avai
5、lable online at http:/www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite
6、 services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals a
7、nd frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1. Electronic Publication Geneva, 2015 ITU 2015 All rights reserved. No part of this publication may be reproduced, by any means
8、 whatsoever, without written permission of ITU. Rec. ITU-R P.834-7 1 RECOMMENDATION ITU-R P.834-7 Effects of tropospheric refraction on radiowave propagation (Question ITU-R 201/3) (1992-1994-1997-1999-2003-2005-2007-2015) Scope Recommendation ITU-R P.834 provides methods for the calculation of larg
9、e-scale refractive effects in the atmosphere, including ray bending, ducting layers, the effective Earth radius, the apparent elevation and boresight angles in Earth-space paths and the effective radio path length. Keywords Tropospheric excess path length, Earth-space link, GNSS, numerical weather p
10、roduct, digital maps The ITU Radiocommunication Assembly, considering a) that for the proper planning of terrestrial and Earth-space links it is necessary to have appropriate calculation procedures for assessing the refractivity effects on radio signals; b) that procedures have been developed that a
11、llow the calculation of some refractive propagation effects on radio signals on terrestrial and Earth-space links, recommends 1 that the information in Annex 1 should be used for the calculation of large-scale refractive effects. Annex 1 1 Ray bending A radio ray passing through the lower (non-ioniz
12、ed) layer of the atmosphere undergoes bending caused by the gradient of the refractive index. Since the refractive index varies mainly with altitude, only the vertical gradient of the refractive index is generally considered. The curvature at a point is therefore contained in the vertical plane and
13、is expressed by: hnn ddcos1 (1) where: : radius of curvature of the ray path n : refractive index of the atmosphere dn/dh : vertical gradient of refractive index 2 Rec. ITU-R P.834-7 h : height of the point above the Earths surface : angle of the ray path with the horizontal at the point considered.
14、 This ray curvature is defined as positive for ray bending towards the Earths surface. This phenomenon is virtually independent of frequency, if the index gradient does not vary significantly over a distance equal to the wavelength. 2 Effective Earth radius If the path is approximately horizontal, i
15、s close to zero. However, since n is very close to 1, equation (1) is simplified as follows: hndd1 (2) It is therefore clear that if the vertical gradient is constant, the trajectories are arcs of a circle. If the height profile of refractivity is linear, i.e. the refractivity gradient is constant a
16、long the ray path, a transformation is possible that allows propagation to be considered as rectilinear. The transformation is to consider a hypothetical Earth of effective radius Re k a, with: eRhnaka 1dd11 (3) where a is the actual Earth radius, and k is the effective earth radius factor (k-factor
17、). With this geometrical transformation, ray trajectories are linear, irrespective of the elevation angle. Strictly speaking, the refractivity gradient is only constant if the path is horizontal. In practice, for heights below 1 000 m the exponential model for the average refractive index profile (s
18、ee Recommendation ITU-R P.453) can be approximated by a linear one. The corresponding k-factor is k 4/3. 3 Modified refractive index For some applications, for example for ray tracing, a modified refractive index or refractive modulus is used, defined in Recommendation ITU-R P.310. The refractive mo
19、dulus M is given by: ahNM (4) h being the height of the point considered expressed in metres and a the Earths radius expressed in thousands of kilometres. This transformation makes it possible to refer to propagation over a flat Earth surmounted by an atmosphere whose refractivity would be equal to
20、the refractive modulus M. 4 Apparent boresight angle on slant paths 4.1 Introduction In sharing studies it is necessary to estimate the apparent elevation angle of a space station taking account of atmospheric refraction. An appropriate calculation method is given below. Rec. ITU-R P.834-7 3 4.2 Vis
21、ibility of space station As described in 1 above, a radio beam emitted from a station on the Earths surface (h (km) altitude and (degrees) elevation angle) would be bent towards the Earth due to the effect of atmospheric refraction. The refraction correction, (degrees), can be evaluated by the follo
22、wing integral: h xxn xn dt a n(5) where is determined as follows on the basis of Snells law in polar coordinates: )()(c o s xnxr c (6) c o s)()( hnhrc (7) r : Earths radius (6 370 km) x : altitude (km). Since the ray bending is very largely determined by the lower part of the atmosphere, for a typic
23、al atmosphere the refractive index at altitude x may be obtained from: )(e xp1)( bxaxn (8) where: a 0.000315 b 0.1361. This model is based on the exponential atmosphere for terrestrial propagation given in Recommen-dation ITU-R P.453. In addition, n (x) is the derivative of n(x), i.e. n (x) ab exp (
24、bx). The values of (h,) (degrees) have been evaluated under the condition of the reference atmosphere and it was found that the following numerical formula gives a good approximation: (h, ) 1/1.314 0.6437 0.02869 2 h (0.2305 0.09428 0.01096 2) 0.008583 h2 (9) The above formula has been derived as an
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ITURP83472015EFFECTSOFTROPOSPHERICREFRACTIONONRADIOWAVEPROPAGATION 对流层 折射 无线电波 传播 影响 PDF

链接地址:http://www.mydoc123.com/p-792280.html