ASTM F1717-2018 Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model.pdf
《ASTM F1717-2018 Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model.pdf》由会员分享,可在线阅读,更多相关《ASTM F1717-2018 Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model.pdf(21页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: F1717 18Standard Test Methods forSpinal Implant Constructs in a Vertebrectomy Model1This standard is issued under the fixed designation F1717; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision.
2、A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 These test methods cover the materials and methods forthe static and fatigue testing of spinal implant assemblies in avertebrectomy m
3、odel.The test materials for most combinationsof spinal implant components can be specific, depending on theintended spinal location and intended method of application tothe spine.1.2 These test methods are intended to provide a basis forthe mechanical comparison among past, present, and futurespinal
4、 implant assemblies. They allow comparison of spinalimplant constructs with different intended spinal locations andmethods of application to the spine. These test methods are notintended to define levels of performance, since sufficientknowledge is not available to predict the consequences of theuse
5、 of a particular device.1.3 These test methods set out guidelines for load types andmethods of applying loads. Methods for three static load typesand one fatigue test are defined for the comparative evaluationof spinal implant assemblies.1.4 These test methods establish guidelines for measuringdispl
6、acements, determining the yield load, and evaluating thestiffness and strength of the spinal implant assembly.1.5 Some spinal constructs may not be testable in all testconfigurations.1.6 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisst
7、andard.1.7 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior
8、 to use.1.8 This international standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBar
9、riers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2D638 Test Method for Tensile Properties of PlasticsE4 Practices for Force Verification of Testing MachinesE6 Terminology Relating to Methods of Mechanical TestingE177 Practice for Use of the Terms Precision and Bias inASTM Tes
10、t MethodsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodE739 Practice for StatisticalAnalysis of Linear or LinearizedStress-Life (S-N) and Strain-Life (-N) Fatigue DataE1150 Definitions of Terms Relating to Fatigue (Withdrawn1996)3F1582 Terminology Re
11、lating to Spinal ImplantsF2077 Test Methods for Intervertebral Body Fusion Devices3. Terminology3.1 Definitions:3.1.1 For definitions of terms relating to these test methods,see Terminology E6, Terminology F1582, and DefinitionsE1150.3.2 Definitions of Terms Specific to This Standard:3.2.1 active le
12、ngth of the longitudinal elementthe straightline distance between the center of attachment of the superioranchor and the center of attachment of the inferior anchor.3.2.2 angular displacement at 2 % offset yield (degrees)the angular displacement of a construct measured via theactuator that produces
13、a permanent angular displacement in theX-Y plane equal to 0.020 times the torsional aspect ratio (seePoint A in Fig. 1).3.2.3 block moment armthe distance in the X direction inthe XY plane between the axis of the hinge pin and either (1)the center of the insertion point of an anchor (screws and1Thes
14、e test methods are under the jurisdiction of ASTM Committee F04 onMedical and Surgical Materials and Devices and are the direct responsibility ofSubcommittee F04.25 on Spinal Devices.Current edition approved June 1, 2018. Published August 2018. Originallyapproved in 1996. Last previous edition appro
15、ved in 2015 as F171715. DOI:10.1520/F1717-18.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The last approv
16、ed version of this historical standard is referenced onwww.astm.org.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization e
17、stablished in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1bolts), (2) the furthest point of contact between the block andplate (anterior plates), or (3) the ce
18、nter point of attachment onthe roll pin farthest from the hinge pin (hooks and wires).3.2.4 compressive or tensile bending stiffness (N/mm)thecompressive or tensile bending yield force divided by elasticdisplacement (see the initial slope of line BC in Fig. 1).3.2.5 compressive or tensile bending ul
19、timate load (N)themaximum compressive or tensile force in the X-Z plane appliedto a spinal implant assembly (see the force at Point E in Fig. 1).The ultimate load should be a function of the device and not ofthe load cell or testing machine.3.2.6 compressive or tensile bending yield load (N)thecompr
20、essive or tensile bending force in the X-Z plane neces-sary to produce a permanent deformation equal to 0.020 timesthe active length of the longitudinal element (see the force atPoint D in Fig. 1).3.2.7 coordinate system/axesthree orthogonal axes aredefined in Fig. 2 and Fig. 3. The anterior-posteri
21、or axis is Xwith positive being anterior. The medial-lateral axis is Y withleft being positive when viewed posteriorly. The superior-inferior axis is Z with superior being positive.3.2.8 displacement at 2 % offset yield (mm)the displace-ment of a construct measured via the actuator that produces ape
22、rmanent deformation equal to 0.020 times the active lengthof the longitudinal element (see Point A in Fig. 1).3.2.9 elastic angular displacement (degrees)the angulardisplacement at 2 % offset yield (see Point A in Fig. 1) minusthe 2 % offset angular displacement (see Point B in Fig. 1).(The distance
23、 between Point A and Point B in Fig. 1.)3.2.10 elastic displacement (mm)the displacement at 2 %offset yield (see Point A in Fig. 1) minus the 2 % offsetdisplacement (see Point B in Fig. 1). (The distance betweenPoint A and Point B in Fig. 1.)3.2.11 failurepermanent deformation resulting fromfracture
24、, plastic deformation, or loosening beyond the ultimatedisplacement or loosening that renders the spinal implantassembly ineffective or unable to adequately resist load.3.2.12 fatigue lifethe number of loading cycles, N,ofaspecified character that the spinal implant assembly sustainsbefore failure o
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMF17172018STANDARDTESTMETHODSFORSPINALIMPLANTCONSTRUCTSINAVERTEBRECTOMYMODELPDF

链接地址:http://www.mydoc123.com/p-535490.html