ASTM E238-2012 5000 Standard Test Method for Pin-Type Bearing Test of Metallic Materials 《金属材料针型承载试验的标准试验方法》.pdf
《ASTM E238-2012 5000 Standard Test Method for Pin-Type Bearing Test of Metallic Materials 《金属材料针型承载试验的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM E238-2012 5000 Standard Test Method for Pin-Type Bearing Test of Metallic Materials 《金属材料针型承载试验的标准试验方法》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E238 12Standard Test Method forPin-Type Bearing Test of Metallic Materials1This standard is issued under the fixed designation E238; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number i
2、n parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers a pin-type bearing test ofmetallic materials to determine bearing yield strength andbearing strength.NOTE 1The presenc
3、e of incidental lubricants on the bearing surfacesmay significantly lower the value of bearing yield strength obtained bythis method.1.2 UnitsThe values stated in inch-pound units are to beregarded as standard. The values given in parentheses aremathematical conversions to SI units that are provided
4、 forinformation only and are not considered standard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility o
5、f regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E4 Practices for Force Verification of Testing MachinesE6 Terminology Relating to Methods of Mechanical TestingE83 Practice for Verification and Classification of Exten-someter SystemsB769 Test Method for Shear Testing
6、of Aluminum AlloysB831 Test Method for Shear Testing of Thin AluminumAlloy Products3. Terminology3.1 Definitions:3.1.1 bearing areathe product of the pin diameter andspecimen thickness.3.1.2 bearing stressthe force per unit of bearing area.3.1.3 bearing strainthe ratio of the bearing deformationof t
7、he bearing hole, in the direction of the applied force, to thepin diameter.3.1.4 bearing yield strengththe bearing stress at which amaterial exhibits a specified limiting deviation from the pro-portionality of bearing stress to bearing strain.3.1.5 bearing strengththe maximum bearing stress whicha m
8、aterial is capable of sustaining.3.1.6 edge distancethe distance from the edge of a bear-ing specimen to the center of the hole in the direction ofapplied force (Fig. 1).3.1.7 edge distance ratiothe ratio of the edge distance tothe pin diameter.3.1.8 For definitions of other terms see Terminology E6
9、.4. Significance and Use4.1 The data obtained from the bearing test are the bearingultimate and yield strength. The data provide a measure of theload-carrying capacity of a material edge loaded with aclose-fitting cylindrical pin through a hole located a specificdistance from the specimen edge.4.2 B
10、earing properties are useful in the comparison ofmaterials and design of structures under conditions where thepin is not restricted.5. Apparatus5.1 Testing MachinesMachines used for bearing testingshall conform to the requirements of Practices E4.5.2 Gripping DevicesVarious types of gripping devices
11、may be used to transmit the measured load applied by thetesting machine to the test specimens. Any grips considered toapply the load axially for tension testing, such as pin connec-tions or wedge grips, are satisfactory for use in bearing testing.5.3 PinThe bearing load is generally applied to thesp
12、ecimen through a close-fitting cylindrical pin. The pin shallbe harder and stronger than the material being tested. Restraintof movement of the specimen where it is in contact with the pinhas a considerable effect upon the hole deformation obtained asa function of the load applied. Close control of
13、surfaceconditions on both the specimen and pin is needed to assurereproducible results. The pins used should be uniform indiameter, hardness, and surface roughness. Pin materials,hardness, and surface roughness as shown in Table 1 arerecommended for testing the materials listed. The pin shouldbe che
14、cked carefully after each test to ensure that no metallicresidue adheres to it and that it is both straight and undeformed.If there is any question regarding its quality it should bereplaced.1This test method is under the jurisdiction of ASTM Committee E28 onMechanical Testing and is the direct resp
15、onsibility of Subcommittee E28.04 onUniaxial Testing.Current edition approved June 1, 2012. Published August 2012. Originallyapproved in 1964. Last previous edition approved in 2008 as E238 84 (2008).DOI: 10.1520/E0238-12.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontac
16、t ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West C
17、onshohocken, PA 19428-2959, United States.5.4 Pin SupportThe jig supporting the pin should positionthe pin concentric with the hole in the specimen. It should notrestrain the thickening of the specimen as the load from the pindeforms the hole. Bending of the pin should be kept to aminimum by having
18、the jig support the pin close to thespecimen. Fig. 2 and Fig. 3 show examples of the types of jigthat have been used and are considered satisfactory.5.5 ExtensometersExtensometers used for measuring thebearing deformation shall comply with the requirements forClass B-2 or better as described in Prac
19、tice E83. The bearingdeformation measurement shall be made in a manner to obtainthe axial bearing deformation with a minimum of otherdeformations being included such as the bending of the pin andtensile strain in the specimen. Fig. 2 shows an adaptation of aTemplin extensometer system to record bear
20、ing deformation.Fig. 3 illustrates a mechanism that can be used to transfer thebearing deformation so it can be measured with the sameextensometers used for tension testing. A method of measuringbearing deformation featuring two linear differential transform-ers is shown in Fig. 4.6. Test Specimens6
21、.1 Specimen GeometryThe specimen shall be a flat sheettype, with the full thickness of the product being used ifpossible. If the specimen is too thick in relation to the pindiameter, the pin is likely to bend considerably or break beforethe bearing strength is obtained. If a specimen is too thin,buc
22、kling may occur. A ratio of pin diameter to specimenthickness of from 2 to 4 has been used to avoid both conditions.The hole should have approximately the same diameter as forthe intended use. For example, if the bearing test results arebeing used to obtain data for a riveted part, a hole316 in. or1
23、4in. (5 or 6 mm) in diameter would be suitable, while for abolted assembly, a larger hole might be desirable. A differencein test results may be obtained with holes of different diam-eters. The width of the specimen shall be 4 to 8 times the holediameter. A wider specimen encourages the intended she
24、ar-outFIG. 1 Bearing Test SpecimenTABLE 1 Characteristics of Pin for Various Materials TestedMaterial Tested MaterialRockwellHardnessSurface Roughness, in. (m) (avg)Aluminum alloys hardened steel C60 to 64 4 to 8 (0.1 to 0.2 m)Beryllium alloys hardened steel C60 to 64 4 to 8 (0.1 to 0.2 m)Copper all
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME23820125000STANDARDTESTMETHODFORPINTYPEBEARINGTESTOFMETALLICMATERIALS 金属材料 承载 试验 标准 方法 PDF

链接地址:http://www.mydoc123.com/p-527194.html