AGMA 11FTM09-2011 Standardization of Load Distribution Evaluation Uniform Definition of KH for Helical Gears.pdf
《AGMA 11FTM09-2011 Standardization of Load Distribution Evaluation Uniform Definition of KH for Helical Gears.pdf》由会员分享,可在线阅读,更多相关《AGMA 11FTM09-2011 Standardization of Load Distribution Evaluation Uniform Definition of KH for Helical Gears.pdf(18页珍藏版)》请在麦多课文档分享上搜索。
1、11FTM09AGMA Technical PaperStandardization of LoadDistribution Evaluation:Uniform Definition ofKHfor Helical GearsBy K. Nazifi, Zollern DorstenerAntriebstechnik GmbH however,thesesuggestionsdiffertoalargedegree. ThestandardisationoftheloaddistributionevaluationandauniformdefinitionofKHforhelicalgear
2、senableasaferdesignforthemanufacturersandaneasiercomparabilityoftheresultsforthecustomers.ThepapercomparesthedifferentsuggestionstotheKHdefinitionandwillderiveasuitabledefinitionforthecalculation methods in DIN 3990 and ISO 6336.Copyright 2011American Gear Manufacturers Association1001 N. Fairfax St
3、reet, 5thFloorAlexandria, Virginia 22314October 2011ISBN: 978-1-61481-008-73 11FTM09Standardization of Load Distribution Evaluation: Uniform Definition of KHforHelical GearsDr.-Ing. Khashayar Nazifi, Zollern Dorstener Antriebstechnik GmbH ZHis zone factor;ZEis elasticity factor, N/mm2;Zis helix angl
4、e factor;Zis contact ratio factor;Ftis transverse tangential load at reference cylinder per mesh, N;d1is reference diameter of pinion, mm;b is face width, mm;u is gear ratio.Theapproachinthecalculationstandards is always thesame; thedrivingtorqueis calculatedtoaloadatthereference or operating cylind
5、er and is converted by geometrical, material and influence factors to a nominalcontact stress at the reference or operating circle as to be seen in equation 1.In an ideal stiff environment andgears withno deviations, the loaddistribution alongthe facewidth wouldbeuniform, see Figure 1 light upper bo
6、x. However in the real world the load dependant deformations and flankform deviations duetomanufacturingresult inanunevenloaddistribution, seeFigure 1dark lowerbox. Thisuneven load distribution leads to high local loads and therefore to high local contact stresses which canexceed the material streng
7、th limit.4 11FTM09Figure 1. Load distribution on a spur gear for an ideal stiff gear and under realisticcircumstancesInequation2, theseinfluences arereflectedwithK factors and theconversion of the contact stress from thereferenceor operatingcircletothepointsB orDisdonethere,too. This resultsinatwodi
8、mensionalproblemwhichhastobesolvedbyaonedimensionalformula. ForreflectionoftheunevennessoftheloaddistributionthefaceloaddistributionfactorKHisusedasinISO6336-1:20084,MethodCandDIN3990-13MethodBthat are virtually the same. ISO 6336-1:2008, Method B, uses the procedure of AGMA 927-A01 2, whichuses the
9、 factor KH. Both factors are similar defined as the maximum load per unit face width divided by themean load per unit face width as one can see in equations 3 and 4.(2)H1,2= ZBDH0KAKvKHKH(3)KH=FbbmaxFmb(4)KH=FgnpeakFgnavewhereH1,2is contact stress, N/mm2;ZBDis single pair tooth contact factors for t
10、he pinion, for the wheel;KAis application factor;Kvis dynamic factor;KHis face load factor (contact stress);KHis transverse load factor (contact stress).Fbis nominal transverse load in plane of action, N;Fmis mean transverse tangential load at the reference or operating circle, N;KHis load distribut
11、ion factor;Fgis total load in the plane of action, N;n is number of discrete points on the face width.Motivation and objectiveWith the usage of helical gears the imprecise nature of the definition emerges. The line of contact is nothorizontaloverthefacewidthanymore;moreoveritisinclinedandrunsdiagona
12、lacrosstheflank,asshownin5 11FTM09Figure 2. Thewholeproblem has changedfrom atwodimensionalintoathree dimensionalproblem andthedefinitions in equations 3 and 4 are not really clear. The new situation leads to a lot of new questions: Is theloadper unit facewidthdefinedfor oneinstantaneous lineof cont
13、act?Whichof theinfinitemeshingpositionsandthereforeresultinginstantaneous lines of contact betweenthestart ofactiveprofile(SAP) andtheendoftheactiveprofile(EAP)havetobetakenintoaccount?Howtohandletheaxialoverlapsandvariablelengthofthe contact line between SAP and EAP? Actually ISO 6336, DIN3990 andA
14、GMA 927-A01use asimplifica-tioninorder togivethedesigners ahandy tool. Thecalculation of the loaddistribution is made withconstantmeshstiffness inevery meshingpositionandsotheinfluenceof thevaryinginstantaneous lines of contact isnot apparent anymore.Manydefinitionshavebeenmadewithintheyears. Eachof
15、 thesesuggestions hasits ownperspectivetothisspecific problem depending on the available metrological technology and calculation possibilities.State of the artDescriptions of load distribution measurements for helical gears were given in the 1970s 6. There weresuggestionstomeasurestraingaugesignalsf
16、romrootfilletsandtocomparethemaximumvalueofthepeakswith the mean value. Signals from root fillets are shown inFigure 3. It is also describedthat dueto thehelixanglethepeaks willappear sequentialby at. However, thereflectionofvaryinginstantaneouslines ofcon-tact and the non proportionality of root fi
17、llet stresses to flank loads was not done. Nevertheless, it is still theeasiest way to determine a load distribution without calculation of the flank loads and it is used very often.Figure 2. Load distribution on a helical gearFigure 3. Root fillet strain gauge signals in a helical gear6 11FTM09Wink
18、elmann 10 described numerical methods to calculate resulting loads on teeth of a helical planetarygearbox duetodeviations anddynamics. AKHvaluewas definedfor eachinstantaneous contactline. Thecalculated maximum of the specific load was compared to the maximum specific load of the ideal, i.e.,deviati
19、on and dynamic free, teeth. Equation 5 shows this relation.(5)KH= maxFbb maxFbb max 0whereIndex 0 is ideal and dynamic free.WiththeintentiontodetermineavaluewhichwasusableinthecalculationsaccordingtotheDIN3990, awaytochoosetherightinstantaneous contactlinewasshowninhis work10. Hedecidedthat theinsta
20、ntaneouscontactlinewiththemaximumofthefactorsKHandKHvwasrightone. KHandKHvdescribetheinfluenceofloadsharinganddynamicstothecontactstressonthegears. FurthermoreKHforthiscontactlinehadtobedivided by the squared helix angle factor Zdefined in DIN 3990 to achieve the KHused in DIN 3990(equation 6).(6)KH
21、=KHmaxKHKHvZ2whereKHis load sharing factor calculated by contact stress comparison;KHvis dynamic factor calculated by contact stress comparison.ThedefinitionoftheloadanddynamicfactorsandofthehelixanglefactorZaccordingtoDIN3990areshownin equations 7 and 8.(7)KHKHv= max Hi(n 0)max H02Hiis max value of
22、 the contact stress on the contact line, N/mm2;H0is(8)Z= cos ,N/mm2; is helix angle, degrees.Newresearchresults9haveledtoanewdefinitionofthehelixanglefactorZintheISO6336. Actuallyithaschanged the value to its opposite as described in equation 9.(9)Z=1cosThis changeof definitionmeans that comparedtot
23、heoldresults, whichimpliedaworseloaddistributionwithincreasing helix angle, the new results just state the opposite.WithhisexactmodelPlaczek7couldcalculateloaddistributionsonthewholeflankforanymeshingposition.Havingtheinformationoftheloadonevery pointof theflank hemadeasuggestiontoreplace KHwithoneo
24、fthefactors describedintheequations 10and11. Inorder toderivethese, additionalfactors(seeequation12and13) havetobedeterminedbefore. ThefactorkFcomparesthemaximumspecific loadontheflank tothespecificloadatthebasecircle. Thefactorkpcomparesthemaximumcontactstressontheflanktothecontactstress at thepitc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AGMA11FTM092011STANDARDIZATIONOFLOADDISTRIBUTIONEVALUATIONUNIFORMDEFINITIONOFKHFORHELICALGEARSPDF

链接地址:http://www.mydoc123.com/p-422127.html