【考研类试卷】考研数学三(线性代数)模拟试卷109及答案解析.doc
《【考研类试卷】考研数学三(线性代数)模拟试卷109及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三(线性代数)模拟试卷109及答案解析.doc(9页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(线性代数)模拟试卷 109 及答案解析(总分:62.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.下列命题中 如果矩阵 AB=E,则 A 可逆且 A 1 =B; 如果 n 阶矩阵 A,B 满足(AB) 2 =E,则(BA) 2 =E; 如果矩阵 A,B 均为 n 阶不可逆矩阵,则 A+B 必不可逆; 如果矩阵 A,B 均为 n 阶不可逆矩阵,则 AB 必不可逆。 正确的是( )(分数:2.00)A.B.C.D.3.设 那么(P 1 ) 2010 A(Q 2011 ) 1 =
2、( ) (分数:2.00)A.B.C.D.4.向量组 1 =(1,3,5,一 1) T , 2 =(2,一 1,一 3,4) T , 3 =(6,4,4,6) T , 4 =(7,7,9,1) T , 5 =(3,2,2,3) T 的极大线性无关组是( )(分数:2.00)A. 1 , 2 , 5B. 1 , 3 , 5C. 2 , 3 , 4D. 3 , 4 , 55.设 A 是 mn 矩阵,B 是 nm 矩阵,则线性方程组(AB)x=0( )(分数:2.00)A.当 nm 时,仅有零解B.当 nm 时,必有非零解C.当 mn 时,仅有零解D.当 mn 时,必有非零解6.设 1 , 2 ,
3、3 , 4 是四维非零列向量组,A=( 1 , 2 , 3 , 4 ),A * 为 A 的伴随矩阵。已知方程组 Ax=0 的基础解系为 k(1,0,2,0) T ,则 A * x=0 的基础解系为( )(分数:2.00)A. 1 , 2 , 3B. 1 + 2 , 2 + 3 , 1 + 3C. 2 , 3 , 4D. 1 + 2 , 2 + 3 , 3 + 4 , 4 + 17.三阶矩阵 A 的特征值全为零,则必有( )(分数:2.00)A.秩 r(A)=0B.秩 r(A)=1C.秩 r(A)=2D.条件不足,不能确定8.设 n 阶矩阵 A 与 B 相似,E 为 n 阶单位矩阵,则( )(分
4、数:2.00)A.E 一 A=EBB.A 与 B 有相同的特征值和特征向量C.A 和 B 都相似于一个对角矩阵D.对任意常数 t,tE 一 A 与 tE 一 B 相似9.下列矩阵中 A 与 B 合同的是( ) (分数:2.00)A.B.C.D.二、填空题(总题数:10,分数:20.00)10.设 n 阶矩阵 (分数:2.00)填空项 1:_11.设 =(1,2,3) T ,=(1, (分数:2.00)填空项 1:_12.设矩阵 A 的伴随矩阵 A * = (分数:2.00)填空项 1:_13.已知 (分数:2.00)填空项 1:_14.如果 =(1,2,t) T 可以由 1 =(2,1,1)
5、T , 2 =(一 1,2,7) T , 3 =(1,一 1,一 4) T 线性表示,则 t 的值是 1。(分数:2.00)填空项 1:_15.已知线性方程组 (分数:2.00)填空项 1:_16.设 A 是秩为 3 的 54 矩阵, 1 , 2 , 3 是非齐次线性方程组 Ax=b 的三个不同的解,如果 1 + 2 +2 3 =(2,0,0,0) T ,3 1 + 2 =(2,4,6,8) T ,则方程组 Ax=b 的通解是 1。(分数:2.00)填空项 1:_17.已知矩阵 (分数:2.00)填空项 1:_18.若三维列向量 , 满足 T =2,其中 T 为 的转置,则矩阵 T 的非零特征
6、值为 1。(分数:2.00)填空项 1:_19.二次型 f(x 1 ,x 2 ,x 3 )=(a 1 x 1 +a 2 x 2 +a 3 x 3 )(b 1 x 1 +b 2 x 2 +b 3 x 3 )的矩阵为 1。(分数:2.00)填空项 1:_三、解答题(总题数:12,分数:24.00)20.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_21.设 n 阶矩阵 (分数:2.00)_22.设矩阵 A 的伴随矩阵 A * = (分数:2.00)_23.设 A 为 n 阶矩阵(n2),A * 为 A 的伴随矩阵,证明 (分数:2.00)_24.设向量组():b 1 ,b r
7、,能由向量组(): 1 , s 线性表示为(b 1 ,b r )=( 1 , s )K,其中 K 为 sr 矩阵,且向量组()线性无关。证明向量组()线性无关的充分必要条件是矩阵 K 的秩 r(K)=r。(分数:2.00)_25.设线性方程组 (分数:2.00)_26.设四元齐次线性方程组 (分数:2.00)_27.已知 (分数:2.00)_28.设 A 为三阶矩阵, 1 , 2 , 3 是线性无关的三维列向量,且满足 A 1 = 1 + 2 + 3 ,A 2 =2 2 + 3 ,A 3 =2 2 +3 3 。 ()求矩阵 A 的特征值; ()求可逆矩阵 P 使得P 1 AP=。(分数:2.0
8、0)_29.已知矩阵 (分数:2.00)_30.设二次型 f=x 1 2 +x 2 2 +x 3 2 一 4x 1 x 2 4x 1 x 3 +2ax 2 x 3 经正交变换化为 3y 1 2 +3y 2 2 +6y 3 2 ,求 a,b 的值及所用正交变换。(分数:2.00)_31.设二次型 f(x 1 ,x 2 ,x 3 )=ax 1 2 +ax 2 2 +(a1)x 3 2 +2x 1 x 3 2x 2 x 3 。 ()求二次型 f 的矩阵的所有特征值; ()若二次型 f 的规范形为 yx 1 2 +y 2 2 ,求 a 的值。(分数:2.00)_考研数学三(线性代数)模拟试卷 109
9、答案解析(总分:62.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.下列命题中 如果矩阵 AB=E,则 A 可逆且 A 1 =B; 如果 n 阶矩阵 A,B 满足(AB) 2 =E,则(BA) 2 =E; 如果矩阵 A,B 均为 n 阶不可逆矩阵,则 A+B 必不可逆; 如果矩阵 A,B 均为 n 阶不可逆矩阵,则 AB 必不可逆。 正确的是( )(分数:2.00)A.B.C.D. 解析:解析:如果 A、B 均为 n 阶矩阵,命题当然正确,但是题中没有 n 阶矩阵这一条件,故不正
10、确。例如 显然 A 不可逆。 若 A、B 为 n 阶矩阵,(AB) 2 =E,即(AB)(AB)=E,则可知 A、B 均可逆,于是 ABA=B 1 ,从而 BABA=E,即(BA) 2 =E。因此正确。 若设 显然 A、B 都不可逆,但A+B= 3.设 那么(P 1 ) 2010 A(Q 2011 ) 1 =( ) (分数:2.00)A.B. C.D.解析:解析:P、Q 均为初等矩阵,因为 p 1 =P,且 P 左乘 A 相当于互换矩阵 A 的第一、三两行,所以 P 2010 。A 表示把 A 的第一、三行互换 2010 次,从而(P 1 ) 2010 A=P 2010 A=A。 又(Q 20
11、11 ) 1 =(Q 1 ) 2011 ,且 Q 1 = 4.向量组 1 =(1,3,5,一 1) T , 2 =(2,一 1,一 3,4) T , 3 =(6,4,4,6) T , 4 =(7,7,9,1) T , 5 =(3,2,2,3) T 的极大线性无关组是( )(分数:2.00)A. 1 , 2 , 5B. 1 , 3 , 5C. 2 , 3 , 4 D. 3 , 4 , 5解析:解析:对向量组构成的矩阵作初等行变换,有 ( 1 , 2 , 3 , 4 , 5 ) 可见秩 r( 1 , 2 , 3 , 4 , 5 )=3。 又因为三阶子式 5.设 A 是 mn 矩阵,B 是 nm 矩
12、阵,则线性方程组(AB)x=0( )(分数:2.00)A.当 nm 时,仅有零解B.当 nm 时,必有非零解C.当 mn 时,仅有零解D.当 mn 时,必有非零解 解析:解析:因为 AB 是 m 阶矩阵,且 r(AB)minr(A),r(B)minm,n,所以当 mn 时,必有 r(AB)m,根据齐次方程组存在非零解的充分必要条件可知,选项 D 正确。6.设 1 , 2 , 3 , 4 是四维非零列向量组,A=( 1 , 2 , 3 , 4 ),A * 为 A 的伴随矩阵。已知方程组 Ax=0 的基础解系为 k(1,0,2,0) T ,则 A * x=0 的基础解系为( )(分数:2.00)A
13、. 1 , 2 , 3B. 1 + 2 , 2 + 3 , 1 + 3C. 2 , 3 , 4 D. 1 + 2 , 2 + 3 , 3 + 4 , 4 + 1解析:解析:方程组 Ax=0 的基础解系只含一个解向量,所以四阶方阵 A 的秩 r(A)=41=3,则其伴随矩阵 A * 的秩 r(A * )=1,于是方程组 A * x=0 的基础解系含有三个线性无关的解向量。 又 A * ( 1 , 2 , 3 , 4 )=A * A=|A|E=O,所以向量 1 , 2 , 3 , 4 都是方程组 A * x=0 的解。将(1,0,2,0) T 代入方程组 Ax=0 可得 1 +2 3 =0,这说明
14、 1 可由向量组 2 , 3 , 4 线性表出,而向量组 1 , 2 , 3 , 4 的秩等于 3,所以向量组 2 , 3 , 4 必线性无关。所以选 C。 事实上,由 1 +2 3 =0 可知向量组 1 , 2 , 3 线性相关,选项 A 不正确;显然,选项 B 中的向量都能被 1 , 2 , 3 线性表出,说明向量组 1 + 2 , 2 + 3 , 1 + 3 线性相关,选项 B 不正确;而选项 D 中的向量组含有四个向量,不是基础解系,所以选型 D 也不正确。7.三阶矩阵 A 的特征值全为零,则必有( )(分数:2.00)A.秩 r(A)=0B.秩 r(A)=1C.秩 r(A)=2D.条
15、件不足,不能确定 解析:解析:考查下列矩阵8.设 n 阶矩阵 A 与 B 相似,E 为 n 阶单位矩阵,则( )(分数:2.00)A.E 一 A=EBB.A 与 B 有相同的特征值和特征向量C.A 和 B 都相似于一个对角矩阵D.对任意常数 t,tE 一 A 与 tE 一 B 相似 解析:解析:因为由 A 与 B 相似不能推得 A=B,所以选项 A 不正确。相似矩阵具有相同的特征多项式,从而有相同的特征值,但不一定具有相同的特征向量,故选项 B 也不正确。对于选项 C,因为根据题设不能推知 A,B 是否相似于对角阵,故选项 C 也不正确。综上可知选项 D 正确。事实上,因 A 与 B 相似,故
16、存在可逆矩阵 P,使 P 1 AP=B, 于是 P 1 (tEA)P=tE 一 P 1 AP=tE 一 B, 可见对任意常数 f,矩阵 tE 一 A 与 tE 一 B 相似。所以应选 D。9.下列矩阵中 A 与 B 合同的是( ) (分数:2.00)A.B.C. D.解析:解析:合同的定义:C T AC=B,矩阵 C 可逆。合同的必要条件是:r(A)=r(B)且行列式|A|与|B|同号。A,B 合同的充要条件是:A 与 B 的正、负惯性指数相同;A 与 B 的正、负特征值的个数相同。A选项的矩阵秩不相等。B 选项中行列式正、负号不同,故排除。C 选项中矩阵 A 的特征值为 1, 2,0,而矩阵
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 模拟 109 答案 解析 DOC
