(通用版)2020高考数学一轮复习1.3简单的逻辑联结词、全称量词与存在量词讲义文.doc
《(通用版)2020高考数学一轮复习1.3简单的逻辑联结词、全称量词与存在量词讲义文.doc》由会员分享,可在线阅读,更多相关《(通用版)2020高考数学一轮复习1.3简单的逻辑联结词、全称量词与存在量词讲义文.doc(11页珍藏版)》请在麦多课文档分享上搜索。
1、1第三节简单的逻辑联结词、全称量词与存在量词一、基础知识批注理解深一点1简单的逻辑联结词(1)命题中的“且” “或” “非” 叫做逻辑联结词用联结词“且”把命题 p和命题 q联结起来,得到复合命题“ p且 q”,记作 pq;用联结词“或”把命题 p和命题 q联结起来,得到复合命题“ p或 q”,记作 pq;对命题 p的结论进行否定,得到复合命题“非 p”,记作綈 p.“且”的数学含义是几个条件同时满足, “且”在集合中的解释为“交集” ;“或”的数学含义是至少满足一个条件, “或”在集合中的解释为“并集” ;“非”的含义是否定,“非 p”只否定 p的结论, “非”在集合中的解释为“补集”. “
2、命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系(2)命题真值表:p q pq pq 綈 p真 真 真 真 假假 真 假 真 真真 假 假 真 假假 假 假 假 真命题真假的判断口诀p q见真即真, p q见假即假, p与綈 p真假相反.2全称量词与存在量词2量词名称 常见量词 表示符号全称量词 所有、一切、任意、全部、每一个等 存在量词 存在一个、至少有一个、有一个、某个、有些、某些等 3.全称命题与特称命题命题名称 命题结构 命题简记全称命题 对 M中
3、任意一个 x,有 p(x)成立 x M, p(x)特称命题 存在 M中的一个 x0,使 p(x0)成立 x0 M, p(x0)4全称命题与特称命题的否定命题 命题的否定x M, p(x) x0 M,綈 p(x0)x0 M, p(x0) x M,綈 p(x)二、常用结论汇总规律多一点含逻辑联结词命题真假的等价关系(1)pq 真 p,q 至少一个真(綈 p)(綈 q)假(2)pq 假 p,q 均假 (綈 p)(綈 q)真(3)pq 真 p,q 均真 (綈 p)(綈 q)假(4)pq 假 p,q 至少一个假(綈 p)(綈 q)真三、基础小题强化功底牢一点 一 判 一 判 对 的 打 “ ”, 错 的
4、 打 “”(1)若命题 pq 为假命题,则命题 p,q 都是假命题( )(2)命题 p和綈 p不可能都是真命题( )(3)若命题 p,q 至少有一个是真命题,则 pq 是真命题( )(4)若命题綈( pq)是假命题,则命题 p,q 中至多有一个是真命题( )(5)“长方形的对角线相等”是特称命题( )答案:(1) (2) (3) (4) (5)(二)选一选31命题 xR, x2 x0 的否定是 ( )A x0R , x x00 B x0R, x x0y,则 x ,则 x0解析:选 D 选项 A中, 0的解集为Error!,命题 q:关于 x的不等式( x a)(x b)0,ln( x 1)0;
5、命题 q:若 ab,则a2b2.下列命题为真命题的是( )A p q B p綈 qC綈 p q D綈 p綈 q(2)(2019安徽安庆模拟)设命题 p: x0(0,), x0 3;命题1x0q: x(2,), x22x,则下列命题为真的是 ( )A p(綈 q) B(綈 p) qC p q D(綈 p) q解析 (1)当 x0时, x11,因此 ln(x1)0,即 p为真命题;取a1, b2,这时满足 ab,显然 a2b2不成立,因此 q为假命题由复合命题的真假性,知 B为真命题(2)对于命题 p,当 x04 时, x0 3,故命题 p为真命题;对于命题 q,当1x0 174x4 时,2 44
6、 216,即 x0(2,),使得 2x0 x 成立,故命题 q为假命题,所以20p (綈 q)为真命题,故选 A.答案 (1)B (2)A解题技法 判断含有逻辑联结词命题真假的步骤题组训练1(2019惠州调研)已知命题 p,q,则“綈 p为假命题”是“ pq 是真命题”的( )A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析:选 B 充分性:若綈 p为假命题,则 p为真命题,由于不知道 q的真假性,所以推不出 pq 是真命题必要性: pq 是真命题,则 p,q 均为真命题,则綈 p为假命题所以“綈 p为假命题”是“ pq 是真命题”的必要不充分条件2已知命题 p:“若
7、x2 x0,则 x1”;命题 q:“若 x, yR, x2 y20,则xy0” 下列命题是真命题的是( )5A p(綈 q) B pqC pq D(綈 p)(綈 q)解析:选 B 若 x2 x0,则 x1或 x0, x 2x0,下列说法正确的是( )20A真命题,其否定是 x00, x 2 x020B假命题,其否定是 x0, x22 xC真命题,其否定是 x0, x22 xD真命题,其否定是 x0, x22 x解析 (1)改全称量词为存在量词,把不等式中的大于或等于改为小于故选 D.(2)已知命题是真命题,如 32982 3,其否定是 x0, x22 x.故选 C.答案 (1)D (2)C解题
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通用版 2020 高考 数学 一轮 复习 13 简单 逻辑 联结 全称 量词 存在 讲义 DOC
