NEMA EWS 1 1-2016 Market Potential for Electricity Efficiency in Urban Water Systems.pdf
《NEMA EWS 1 1-2016 Market Potential for Electricity Efficiency in Urban Water Systems.pdf》由会员分享,可在线阅读,更多相关《NEMA EWS 1 1-2016 Market Potential for Electricity Efficiency in Urban Water Systems.pdf(8页珍藏版)》请在麦多课文档分享上搜索。
1、NEMA Standards PublicationNational Electrical Manufacturers AssociationNEMA EWS 1.1-2016Market Potential for Electricity Efficiency in Urban Water Systems 2016 National Electrical Manufacturers Association 1 Market Potential for Electricity Efficiency in Urban Water Systems Companion document to Inc
2、reasing Energy Efficiency in Urban Water Systems: Summary Report 1.1 Potential Energy Savings in Typical Water Utility Operations The study, conducted jointly by the Electric Power Research Institute (EPRI) and Water Research Foundation (WRF) to assess electricity use for different water treatment a
3、nd delivery systems, provides a useful baseline for identifying the geographical markets and facility types that may be most amenable to adopting new equipment.1 The EPRI/WRF report identified the separate processes within five example systems, listed in the table below. The table also lists project
4、ed energy use and intensity. Table 1 Summary of Water Treatment Facility Examples Treatment Plant Description Total Daily Electricity (kWh/day) Electric Energy Intensity (kWh/MG) Example 1: 18 million gallons per day (MGD) conventional treatment plant treating surface water 25,605 1,420 Example 2: 8
5、0 MGD lime sodasoftening plant treating surface water 140,389 1,760 Example 3: 8 MGD ultrafiltration plant treating surface water using UV disinfection 20,067 2,510 Example 4: 14 MGD groundwater plant using aeration 30,970 2,210 Example 5: 4 MGD seawater desalination plant 54,247 13,600 Based on the
6、se values and the descriptions in the EPRI/WRF report, the energy use by the process is identified in the table below.2 The graphical scales in each cell compare the relative size of energy use within each system train. Most notable is that finished-water pumping is by far the largest energy use in
7、four of the five systems, the only exception being reverse osmosis for seawater desalination. For plants with ultrafiltration, contaminant removal is the next largest use; for groundwater-sourced plants, the groundwater pumping is nearly as large as the finished-water delivery. 1 EPRI and WRF, Elect
8、ricity Use and Management in the Municipal Water Supply and Wastewater Industries, 3002001433, Final Report, November 2013. 2 The totals in this table could not be fully reconciled with the results in the EPRI/WRF report in the two examples for the lime sodasoftening treatment facility and the seawa
9、ter desalination plant. 2016 National Electrical Manufacturers Association 2 Table 2 Energy Use by Process (Source: EPRI/WRF) Using these five examples, the state estimated electricity bill savings for average commercial and industrial utility rates.3 Potential energy savings were calculated from th
10、e EPRI/WRF report based on improving from a “wire-to-water” efficiency of all pumping systems of approximately 65 to 75 percent for four of the examples and from 55 to 75 percent for the lime-soda example system. The annual electricity bill savings were calculated assuming full operation 365 days pe
11、r year. Tables 3 and 4 below show the study teams estimated energy bill savings per million gallons per day (MGD) by state and as a U.S. average. The states with the largest savings are shaded in red and those with the least savings in blue. The lime-soda and groundwater systems appear to have the g
12、reatest potential in financial savings from improving pump efficiency, and desalination appears to have the least potential.4 The annual savings per MGD for the lower 48 states range from $5,000 to $27,000 on commercial rates and $3,000 to $23,000 on industrial rates. Annual savings per acre-foot fo
13、r those on commercial rates range from $6 to $16 across system types and $5 to $24 across states; savings on industrial rates range from $4 to $11 across types and $3 to $21 across states. 3 U.S. Energy Information Administration, Form EIA-826, Monthly Electric Sales and Revenue Report with State Di
14、stributions Report, Table 5.6.B. Average Price of Electricity to Ultimate Customers by End-Use Sector, by State, Year-to-Date (Cents per Kilowatt-hour). 4 Note, however, that reverse osmosis is highly energy intensive, but given that most plants are likely using the newest technology, the additional
15、 savings potential is minimal. E x a m p l e s : 1 2 3 4 5M G D 18 80 8 14 4B Y U N I T P R O C E S S C o n ve n ti o n a l L i m e S o d a U l tr a f i l tr a ti o n G r o u n d w a te r D e sa l i n a ti o ns o u r c e w a ter p u m p i n g R a w s u r f a c e w a ter p u m p i n g 2 , 6 1 0 1 2 ,
16、 9 0 5 1 , 1 6 0 464s o u r c e w a ter p u m p i n g r a w g r o u n d w a ter p u m p i n g 1 2 , 9 3 5c l a r i f i c a ti o n r a p i d m i x i n g 558 2 , 4 6 4 256c l a r i f i c a ti o n f l o c c u l a ti o n 162 720c l a r i f i c a ti o n s ed i m en ta ti o n 158 701c l a r i f i c a ti o
17、 n c h em i c a l f eed s y s tem s 65 65 65 65 0c l a r i f i c a ti o n m i c r o f i l tr a ti o n ( i n l i eu o f s ed i m en ta ti o n )c l a r i f i c a ti o n u l tr a f i l tr a ti o n ( c o n ta m i n a n t r em o v a l ) 6 , 4 0 0c l a r i f i c a ti o n r ev er s e o s m o s i s ( b r a
18、c k i s h w a ter )c l a r i f i c a ti o n r ev er s e o s m o s i s ( o c ea r n w a ter ) 3 8 , 4 0 0c l a r i f i c a ti o n d i s s o l v ed a i r f l o ta ti o n 1 , 4 3 2c l a r i f i c a ti o n a i r s tr i p p i n gc l a r i f i c a ti o n r ep u m p i n g w i th i n tr ea tm en t p l a n t
19、 3 , 1 2 0f i l tr a ti o n a n d s o l i d s h a n d l i n g b a c k w a s h w a ter p u m p s 225 1 , 0 3 8 99 36f i l tr a ti o n a n d s o l i d s h a n d l i n g r esi d u a l s p u m p i n g 72 320 32 13f i l tr a ti o n a n d s o l i d s h a n d l i n g th i c k en ed s o l i d s p u m p i n
20、g 100 496 50d i s i n f ec ti o n , p u m p i n g a n d n o n p r o c ess l o a d s o n s i te c h l o r i n e g en er a ti o n f o r d i s i n f ec ti o nd i s i n f ec ti o n , p u m p i n g a n d n o n p r o c ess l o a d s o z o n e d i s i n f ec ti o nd i s i n f ec ti o n , p u m p i n g a n
21、d n o n p r o c ess l o a d s U V d i s i n f ec ti o n 499 875d i s i n f ec ti o n , p u m p i n g a n d n o n p r o c ess l o a d s f i n i s h ed w a ter p u m p i n g 1 9 , 4 5 6 8 6 , 8 1 9 8 , 7 5 4 1 5 , 2 4 8 3 , 4 2 8d i s i n f ec ti o n , p u m p i n g a n d n o n p r o c ess l o a d s n
22、 o n p r o c ess l o a d s ( b u i l d i n g s , H V A C , l i g h ti n g , c o m p u ter s , etc )3 , 3 0 0 1 4 , 4 0 0 1 , 7 4 0 2 , 7 0 0 720k W h / M G D 1 , 4 8 4 1 , 5 3 8 2 , 5 5 5 2 , 2 7 7 1 0 , 7 6 5T o t a l : 2 6 , 7 0 6 1 2 3 , 0 4 8 2 0 , 4 3 7 3 1 , 8 7 3 4 3 , 0 6 1 2016 National Ele
23、ctrical Manufacturers Association 3 Table 3 Estimated Electricity Bill Savings by Example Water Treatment Facility for Pump Efficiency Improvements per MDG for Commercial Rates E s t i m a t e d E l e c t r i c i t y B i l l S a v i n g s b y E x a m p l e W a t e r T r e a t m e n t F a c i l i t y
24、 f o r P u m p E f f i c i e n c y I m p r o v e m e n t sP e r M G D f o r C o m m e r c i a l R a t e sE x a m p l e 1 2 3 4 5C o n ve n ti o n a l L i m e S o d a U l tr a f i l tr a ti o n G r o u n d w a te r D e sa l i n a ti o nS t a t e M G D 18 80 8 14 4C o n n e c t i c u t $ 1 3 , 6 4 7 $
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NEMAEWS112016MARKETPOTENTIALFORELECTRICITYEFFICIENCYINURBANWATERSYSTEMSPDF

链接地址:http://www.mydoc123.com/p-994189.html